关系型动作规则的增量学习

Christophe Rodrigues, Pierre Gérard, C. Rouveirol, H. Soldano
{"title":"关系型动作规则的增量学习","authors":"Christophe Rodrigues, Pierre Gérard, C. Rouveirol, H. Soldano","doi":"10.1109/ICMLA.2010.73","DOIUrl":null,"url":null,"abstract":"In the Relational Reinforcement learning framework, we propose an algorithm that learns an action model allowing to predict the resulting state of each action in any given situation. The system incrementally learns a set of first order rules: each time an example contradicting the current model (a counter-example) is encountered, the model is revised to preserve coherence and completeness, by using data-driven generalization and specialization mechanisms. The system is proved to converge by storing counter-examples only, and experiments on RRL benchmarks demonstrate its good performance w.r.t state of the art RRL systems.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Incremental Learning of Relational Action Rules\",\"authors\":\"Christophe Rodrigues, Pierre Gérard, C. Rouveirol, H. Soldano\",\"doi\":\"10.1109/ICMLA.2010.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Relational Reinforcement learning framework, we propose an algorithm that learns an action model allowing to predict the resulting state of each action in any given situation. The system incrementally learns a set of first order rules: each time an example contradicting the current model (a counter-example) is encountered, the model is revised to preserve coherence and completeness, by using data-driven generalization and specialization mechanisms. The system is proved to converge by storing counter-examples only, and experiments on RRL benchmarks demonstrate its good performance w.r.t state of the art RRL systems.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在关系强化学习框架中,我们提出了一种算法,该算法学习一个动作模型,允许在任何给定情况下预测每个动作的结果状态。系统逐渐学习一组一阶规则:每次遇到与当前模型相矛盾的例子(反例)时,通过使用数据驱动的泛化和专门化机制,对模型进行修订以保持一致性和完整性。通过仅存储反例证明了该系统的收敛性,并在RRL基准测试上进行了实验,证明了该系统在现有RRL系统中具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Learning of Relational Action Rules
In the Relational Reinforcement learning framework, we propose an algorithm that learns an action model allowing to predict the resulting state of each action in any given situation. The system incrementally learns a set of first order rules: each time an example contradicting the current model (a counter-example) is encountered, the model is revised to preserve coherence and completeness, by using data-driven generalization and specialization mechanisms. The system is proved to converge by storing counter-examples only, and experiments on RRL benchmarks demonstrate its good performance w.r.t state of the art RRL systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信