玻璃钢复合材料约束膨胀水泥混凝土的形状改性研究

Zihan Yan, C. Pantelides, L. Reaveley
{"title":"玻璃钢复合材料约束膨胀水泥混凝土的形状改性研究","authors":"Zihan Yan, C. Pantelides, L. Reaveley","doi":"10.14359/14880","DOIUrl":null,"url":null,"abstract":"Synopsis: To improve the confinement effectiveness of FRP composites for square and rectangular columns, shape modification is performed by using prefabricated FRP shells combined with expansive cement concrete. Chemical post-tensioning using expansive cement concrete is used to change the FRP confinement from “passive” to “active”. Experimental results are presented demonstrating the effectiveness of this method. An analytical stress-strain model is developed for shape-modified FRP-confined columns with expansive cement concrete which is based on the modified Willam-Warnke plasticity model, the Popovics general stress-strain concrete model, and the dilatancy behavior obtained from the present study. This model is implemented by an incremental approach which accounts for the variable FRP confinement during the loading process. The analytical results show satisfactory agreement with the experiments.","PeriodicalId":151616,"journal":{"name":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Shape Modification with Expansive Cement Concrete for Confinement with FRP Composites\",\"authors\":\"Zihan Yan, C. Pantelides, L. Reaveley\",\"doi\":\"10.14359/14880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synopsis: To improve the confinement effectiveness of FRP composites for square and rectangular columns, shape modification is performed by using prefabricated FRP shells combined with expansive cement concrete. Chemical post-tensioning using expansive cement concrete is used to change the FRP confinement from “passive” to “active”. Experimental results are presented demonstrating the effectiveness of this method. An analytical stress-strain model is developed for shape-modified FRP-confined columns with expansive cement concrete which is based on the modified Willam-Warnke plasticity model, the Popovics general stress-strain concrete model, and the dilatancy behavior obtained from the present study. This model is implemented by an incremental approach which accounts for the variable FRP confinement during the loading process. The analytical results show satisfactory agreement with the experiments.\",\"PeriodicalId\":151616,\"journal\":{\"name\":\"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/14880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/14880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要:为了提高FRP复合材料对方形和矩形柱的约束效果,采用预制FRP壳与膨胀水泥混凝土相结合的方法进行了形状改性。采用膨胀水泥混凝土进行化学后张,使FRP约束由“被动”变为“主动”。实验结果证明了该方法的有效性。基于修正的william - warnke塑性模型、Popovics广义应力-应变混凝土模型和本研究得到的剪胀特性,建立了膨胀水泥混凝土形状改性frp约束柱的应力-应变解析模型。该模型采用增量方法实现,该方法考虑了加载过程中FRP约束的变化。分析结果与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape Modification with Expansive Cement Concrete for Confinement with FRP Composites
Synopsis: To improve the confinement effectiveness of FRP composites for square and rectangular columns, shape modification is performed by using prefabricated FRP shells combined with expansive cement concrete. Chemical post-tensioning using expansive cement concrete is used to change the FRP confinement from “passive” to “active”. Experimental results are presented demonstrating the effectiveness of this method. An analytical stress-strain model is developed for shape-modified FRP-confined columns with expansive cement concrete which is based on the modified Willam-Warnke plasticity model, the Popovics general stress-strain concrete model, and the dilatancy behavior obtained from the present study. This model is implemented by an incremental approach which accounts for the variable FRP confinement during the loading process. The analytical results show satisfactory agreement with the experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信