用梯度采样技术求非光滑凸函数的拟牛顿近端束法

M. Maleknia, M. Shamsi
{"title":"用梯度采样技术求非光滑凸函数的拟牛顿近端束法","authors":"M. Maleknia, M. Shamsi","doi":"10.1080/10556788.2021.2023522","DOIUrl":null,"url":null,"abstract":"This study aims to merge the well-established ideas of bundle and Gradient Sampling (GS) methods to develop an algorithm for locating a minimizer of a nonsmooth convex function. In the proposed method, with the help of the GS technique, we sample a number of differentiable auxiliary points around the current iterate. Then, by applying the standard techniques used in bundle methods, we construct a polyhedral (piecewise linear) model of the objective function. Moreover, by performing quasi-Newton updates on the set of auxiliary points, this polyhedral model is augmented with a regularization term that enjoys second-order information. If required, this initial model is improved by the techniques frequently used in GS and bundle methods. We analyse the global convergence of the proposed method. As opposed to the original GS method and some of its variants, our convergence analysis is independent of the size of the sample. In our numerical experiments, various aspects of the proposed method are examined using a variety of test problems. In particular, in contrast with many variants of bundle methods, we will see that the user can supply gradients approximately. Moreover, we compare the proposed method with some efficient variants of GS and bundle methods.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A quasi-Newton proximal bundle method using gradient sampling technique for minimizing nonsmooth convex functions\",\"authors\":\"M. Maleknia, M. Shamsi\",\"doi\":\"10.1080/10556788.2021.2023522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to merge the well-established ideas of bundle and Gradient Sampling (GS) methods to develop an algorithm for locating a minimizer of a nonsmooth convex function. In the proposed method, with the help of the GS technique, we sample a number of differentiable auxiliary points around the current iterate. Then, by applying the standard techniques used in bundle methods, we construct a polyhedral (piecewise linear) model of the objective function. Moreover, by performing quasi-Newton updates on the set of auxiliary points, this polyhedral model is augmented with a regularization term that enjoys second-order information. If required, this initial model is improved by the techniques frequently used in GS and bundle methods. We analyse the global convergence of the proposed method. As opposed to the original GS method and some of its variants, our convergence analysis is independent of the size of the sample. In our numerical experiments, various aspects of the proposed method are examined using a variety of test problems. In particular, in contrast with many variants of bundle methods, we will see that the user can supply gradients approximately. Moreover, we compare the proposed method with some efficient variants of GS and bundle methods.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2021.2023522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2021.2023522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是将集束和梯度采样(GS)方法的思想结合起来,开发一种定位非光滑凸函数最小值的算法。在提出的方法中,我们借助GS技术,在当前迭代周围采样一些可微的辅助点。然后,利用束方法中的标准技术,构造了目标函数的多面体(分段线性)模型。此外,通过对辅助点集进行准牛顿更新,该多面体模型得到了具有二阶信息的正则化项。如果需要,这个初始模型可以通过GS和bundle方法中经常使用的技术进行改进。分析了该方法的全局收敛性。与原始的GS方法及其一些变体相反,我们的收敛分析与样本的大小无关。在我们的数值实验中,使用各种测试问题检查了所提出方法的各个方面。特别是,与bundle方法的许多变体相比,我们将看到用户可以近似地提供梯度。此外,我们还将该方法与一些有效的GS方法和bundle方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quasi-Newton proximal bundle method using gradient sampling technique for minimizing nonsmooth convex functions
This study aims to merge the well-established ideas of bundle and Gradient Sampling (GS) methods to develop an algorithm for locating a minimizer of a nonsmooth convex function. In the proposed method, with the help of the GS technique, we sample a number of differentiable auxiliary points around the current iterate. Then, by applying the standard techniques used in bundle methods, we construct a polyhedral (piecewise linear) model of the objective function. Moreover, by performing quasi-Newton updates on the set of auxiliary points, this polyhedral model is augmented with a regularization term that enjoys second-order information. If required, this initial model is improved by the techniques frequently used in GS and bundle methods. We analyse the global convergence of the proposed method. As opposed to the original GS method and some of its variants, our convergence analysis is independent of the size of the sample. In our numerical experiments, various aspects of the proposed method are examined using a variety of test problems. In particular, in contrast with many variants of bundle methods, we will see that the user can supply gradients approximately. Moreover, we compare the proposed method with some efficient variants of GS and bundle methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信