Tao Li, Xu Cao, Haisong Liu, Chenqi Shi, Pengpeng Chen
{"title":"mtp步态:基于毫米波雷达时空信息的多人步态识别","authors":"Tao Li, Xu Cao, Haisong Liu, Chenqi Shi, Pengpeng Chen","doi":"10.1109/ICPADS53394.2021.00088","DOIUrl":null,"url":null,"abstract":"As one of the important methods of identity recognition, gait recognition has a wide range of applications in the fields of new human-computer interaction, smart home, smart office and health monitoring. In this paper, we propose a system for multi-person gait recognition (MTPGait) with spatio-temporal information via millimeter wave radar. We specially design a neural network that can extract multi-scale spatio-temporal features along space and time dimensions of 3D point cloud concisely and efficiently. In addition, we construct and release a millimeter wave radar 3D point cloud data set, which consists of 960-minute gait data of 25 volunteers. The experimental results show that MTPGait is able to achieve 96.7% recognition accuracy in a single-person scene on random routes, and 90.2 % recognition accuracy when two people coexist, while the accuracy of the existing methods can not reach 90 % in either scenario.","PeriodicalId":309508,"journal":{"name":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MTPGait: Multi-person Gait Recognition with Spatio-temporal Information via Millimeter Wave Radar\",\"authors\":\"Tao Li, Xu Cao, Haisong Liu, Chenqi Shi, Pengpeng Chen\",\"doi\":\"10.1109/ICPADS53394.2021.00088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the important methods of identity recognition, gait recognition has a wide range of applications in the fields of new human-computer interaction, smart home, smart office and health monitoring. In this paper, we propose a system for multi-person gait recognition (MTPGait) with spatio-temporal information via millimeter wave radar. We specially design a neural network that can extract multi-scale spatio-temporal features along space and time dimensions of 3D point cloud concisely and efficiently. In addition, we construct and release a millimeter wave radar 3D point cloud data set, which consists of 960-minute gait data of 25 volunteers. The experimental results show that MTPGait is able to achieve 96.7% recognition accuracy in a single-person scene on random routes, and 90.2 % recognition accuracy when two people coexist, while the accuracy of the existing methods can not reach 90 % in either scenario.\",\"PeriodicalId\":309508,\"journal\":{\"name\":\"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS53394.2021.00088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS53394.2021.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MTPGait: Multi-person Gait Recognition with Spatio-temporal Information via Millimeter Wave Radar
As one of the important methods of identity recognition, gait recognition has a wide range of applications in the fields of new human-computer interaction, smart home, smart office and health monitoring. In this paper, we propose a system for multi-person gait recognition (MTPGait) with spatio-temporal information via millimeter wave radar. We specially design a neural network that can extract multi-scale spatio-temporal features along space and time dimensions of 3D point cloud concisely and efficiently. In addition, we construct and release a millimeter wave radar 3D point cloud data set, which consists of 960-minute gait data of 25 volunteers. The experimental results show that MTPGait is able to achieve 96.7% recognition accuracy in a single-person scene on random routes, and 90.2 % recognition accuracy when two people coexist, while the accuracy of the existing methods can not reach 90 % in either scenario.