三维激光数据高效分割的聚类方法

Klaas Klasing, D. Wollherr, M. Buss
{"title":"三维激光数据高效分割的聚类方法","authors":"Klaas Klasing, D. Wollherr, M. Buss","doi":"10.1109/ROBOT.2008.4543832","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel method for the efficient segmentation of 3D laser range data. The proposed algorithm is based on a radially bounded nearest neighbor strategy and requires only two parameters. It yields deterministic, repeatable results and does not depend on any initialization procedure. The efficiency of the method is verified with synthetic and real 3D data.","PeriodicalId":351230,"journal":{"name":"2008 IEEE International Conference on Robotics and Automation","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"181","resultStr":"{\"title\":\"A clustering method for efficient segmentation of 3D laser data\",\"authors\":\"Klaas Klasing, D. Wollherr, M. Buss\",\"doi\":\"10.1109/ROBOT.2008.4543832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel method for the efficient segmentation of 3D laser range data. The proposed algorithm is based on a radially bounded nearest neighbor strategy and requires only two parameters. It yields deterministic, repeatable results and does not depend on any initialization procedure. The efficiency of the method is verified with synthetic and real 3D data.\",\"PeriodicalId\":351230,\"journal\":{\"name\":\"2008 IEEE International Conference on Robotics and Automation\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"181\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2008.4543832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2008.4543832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 181

摘要

本文提出了一种有效分割三维激光距离数据的新方法。该算法基于径向有界最近邻策略,只需要两个参数。它产生确定性的、可重复的结果,并且不依赖于任何初始化过程。用合成的和真实的三维数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A clustering method for efficient segmentation of 3D laser data
In this paper we present a novel method for the efficient segmentation of 3D laser range data. The proposed algorithm is based on a radially bounded nearest neighbor strategy and requires only two parameters. It yields deterministic, repeatable results and does not depend on any initialization procedure. The efficiency of the method is verified with synthetic and real 3D data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信