不确定条件下决策的层次DSmP变换

J. Dezert, Deqiang Han, Zhunga Liu, J. Tacnet
{"title":"不确定条件下决策的层次DSmP变换","authors":"J. Dezert, Deqiang Han, Zhunga Liu, J. Tacnet","doi":"10.5281/ZENODO.22469","DOIUrl":null,"url":null,"abstract":"Dempster-Shafer evidence theory is widely used for approximate reasoning under uncertainty; however, the decision-making is more intuitive and easy to justify when made in the probabilistic context. Thus the transformation to approximate a belief function into a probability measure is crucial and important for decision-making based on evidence theory framework. In this paper we present a new transformation of any general basic belief assignment (bba) into a Bayesian belief assignment (or subjective probability measure) based on new proportional and hierarchical principle of uncertainty reduction. Some examples are provided to show the rationality and efficiency of our proposed probability transformation approach.","PeriodicalId":155585,"journal":{"name":"2012 15th International Conference on Information Fusion","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Hierarchical DSmP transformation for decision-making under uncertainty\",\"authors\":\"J. Dezert, Deqiang Han, Zhunga Liu, J. Tacnet\",\"doi\":\"10.5281/ZENODO.22469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dempster-Shafer evidence theory is widely used for approximate reasoning under uncertainty; however, the decision-making is more intuitive and easy to justify when made in the probabilistic context. Thus the transformation to approximate a belief function into a probability measure is crucial and important for decision-making based on evidence theory framework. In this paper we present a new transformation of any general basic belief assignment (bba) into a Bayesian belief assignment (or subjective probability measure) based on new proportional and hierarchical principle of uncertainty reduction. Some examples are provided to show the rationality and efficiency of our proposed probability transformation approach.\",\"PeriodicalId\":155585,\"journal\":{\"name\":\"2012 15th International Conference on Information Fusion\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 15th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.22469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.22469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

Dempster-Shafer证据理论被广泛用于不确定条件下的近似推理;然而,在概率环境下做出的决策更直观,更容易证明。因此,将近似信念函数转化为概率测度对于基于证据理论框架的决策是至关重要的。本文提出了一种新的基于比例和层次的不确定性约简原理,将任意一般基本信念赋值(bba)转化为贝叶斯信念赋值(或主观概率测度)的方法。算例说明了本文提出的概率变换方法的合理性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical DSmP transformation for decision-making under uncertainty
Dempster-Shafer evidence theory is widely used for approximate reasoning under uncertainty; however, the decision-making is more intuitive and easy to justify when made in the probabilistic context. Thus the transformation to approximate a belief function into a probability measure is crucial and important for decision-making based on evidence theory framework. In this paper we present a new transformation of any general basic belief assignment (bba) into a Bayesian belief assignment (or subjective probability measure) based on new proportional and hierarchical principle of uncertainty reduction. Some examples are provided to show the rationality and efficiency of our proposed probability transformation approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信