M. Gryniuk, Dirk M. Kestner, Luke Lombardi, M. Stringer, M. D. Webster, L. Wingo, Frances Yang
{"title":"为美国的结构工程师制定具体的碳教育、跟踪和减少框架","authors":"M. Gryniuk, Dirk M. Kestner, Luke Lombardi, M. Stringer, M. D. Webster, L. Wingo, Frances Yang","doi":"10.2749/ghent.2021.0224","DOIUrl":null,"url":null,"abstract":"Achieving reductions to embodied carbon, the global warming potential emissions due to the production of materials, is an essential component to meeting science-based climate targets. Studies have shown that a significant portion of embodied emissions within the built environment are due to structural materials. However, many structural engineers are, not only uneducated in the concept of embodied carbon, but also not aware of the role their decisions can make in addressing climate change. This is further exacerbated by a profession that does not have sufficient structural system embodied carbon benchmark information to make important and informed early design decisions. This required the collaborative development of a structural engineering commitment program, SE 2050, that is supported by leading professional organizations to spur the education and transformation of the profession.","PeriodicalId":162435,"journal":{"name":"IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crafting a framework of embodied carbon education, tracking, and reduction for US-based structural engineers\",\"authors\":\"M. Gryniuk, Dirk M. Kestner, Luke Lombardi, M. Stringer, M. D. Webster, L. Wingo, Frances Yang\",\"doi\":\"10.2749/ghent.2021.0224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving reductions to embodied carbon, the global warming potential emissions due to the production of materials, is an essential component to meeting science-based climate targets. Studies have shown that a significant portion of embodied emissions within the built environment are due to structural materials. However, many structural engineers are, not only uneducated in the concept of embodied carbon, but also not aware of the role their decisions can make in addressing climate change. This is further exacerbated by a profession that does not have sufficient structural system embodied carbon benchmark information to make important and informed early design decisions. This required the collaborative development of a structural engineering commitment program, SE 2050, that is supported by leading professional organizations to spur the education and transformation of the profession.\",\"PeriodicalId\":162435,\"journal\":{\"name\":\"IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/ghent.2021.0224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/ghent.2021.0224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crafting a framework of embodied carbon education, tracking, and reduction for US-based structural engineers
Achieving reductions to embodied carbon, the global warming potential emissions due to the production of materials, is an essential component to meeting science-based climate targets. Studies have shown that a significant portion of embodied emissions within the built environment are due to structural materials. However, many structural engineers are, not only uneducated in the concept of embodied carbon, but also not aware of the role their decisions can make in addressing climate change. This is further exacerbated by a profession that does not have sufficient structural system embodied carbon benchmark information to make important and informed early design decisions. This required the collaborative development of a structural engineering commitment program, SE 2050, that is supported by leading professional organizations to spur the education and transformation of the profession.