{"title":"基于噪声参数估计的斑点OCT图像神经网络去噪","authors":"M. Avanaki, P. Laissue, A. Podoleanu, A. Hojjat","doi":"10.1117/12.814937","DOIUrl":null,"url":null,"abstract":"This paper presents a neural network based technique to denoise speckled images in optical coherence tomography (OCT). Speckle noise is modeled as Rayleigh distribution, and the neural network estimates the noise parameter, sigma. Twenty features from each image are used as input for training the neural network, and the sigma value is the single output of the network. The certainty of the trained network was more than 91 percent. The promising image results were assessed with three No-Reference metrics, with the Signal-to-Noise ratio of the denoised image being considerably increased.","PeriodicalId":184459,"journal":{"name":"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Denoising based on noise parameter estimation in speckled OCT images using neural network\",\"authors\":\"M. Avanaki, P. Laissue, A. Podoleanu, A. Hojjat\",\"doi\":\"10.1117/12.814937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a neural network based technique to denoise speckled images in optical coherence tomography (OCT). Speckle noise is modeled as Rayleigh distribution, and the neural network estimates the noise parameter, sigma. Twenty features from each image are used as input for training the neural network, and the sigma value is the single output of the network. The certainty of the trained network was more than 91 percent. The promising image results were assessed with three No-Reference metrics, with the Signal-to-Noise ratio of the denoised image being considerably increased.\",\"PeriodicalId\":184459,\"journal\":{\"name\":\"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.814937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.814937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Denoising based on noise parameter estimation in speckled OCT images using neural network
This paper presents a neural network based technique to denoise speckled images in optical coherence tomography (OCT). Speckle noise is modeled as Rayleigh distribution, and the neural network estimates the noise parameter, sigma. Twenty features from each image are used as input for training the neural network, and the sigma value is the single output of the network. The certainty of the trained network was more than 91 percent. The promising image results were assessed with three No-Reference metrics, with the Signal-to-Noise ratio of the denoised image being considerably increased.