混搭组合推荐系统的比较

P. Cremonesi, Matteo Picozzi, M. Matera
{"title":"混搭组合推荐系统的比较","authors":"P. Cremonesi, Matteo Picozzi, M. Matera","doi":"10.5555/2666719.2666732","DOIUrl":null,"url":null,"abstract":"Web mashups are a new generation of applications created by composing contents and functions available through Web services and APIs. A central activity in mashup development is the retrieval and selection of components to be included in the composition. The adoption of recommender systems can alleviate some of the difficulties arising in this activity. Based on the results of an empirical study, this paper tries to shed light on the application of recommender systems to the mashup composition domain, and discusses the performance of different recommendation systems when applied to a very large collection of mashups and mashup components.","PeriodicalId":193223,"journal":{"name":"2012 Third International Workshop on Recommendation Systems for Software Engineering (RSSE)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A comparison of recommender systems for mashup composition\",\"authors\":\"P. Cremonesi, Matteo Picozzi, M. Matera\",\"doi\":\"10.5555/2666719.2666732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web mashups are a new generation of applications created by composing contents and functions available through Web services and APIs. A central activity in mashup development is the retrieval and selection of components to be included in the composition. The adoption of recommender systems can alleviate some of the difficulties arising in this activity. Based on the results of an empirical study, this paper tries to shed light on the application of recommender systems to the mashup composition domain, and discusses the performance of different recommendation systems when applied to a very large collection of mashups and mashup components.\",\"PeriodicalId\":193223,\"journal\":{\"name\":\"2012 Third International Workshop on Recommendation Systems for Software Engineering (RSSE)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Workshop on Recommendation Systems for Software Engineering (RSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2666719.2666732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Workshop on Recommendation Systems for Software Engineering (RSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2666719.2666732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

Web mashup是通过组合Web服务和api提供的内容和功能创建的新一代应用程序。mashup开发中的一个中心活动是检索和选择要包含在组合中的组件。采用推荐系统可以减轻这项活动中产生的一些困难。基于一项实证研究的结果,本文试图阐明推荐系统在mashup组合领域的应用,并讨论了不同推荐系统在应用于非常大的mashup和mashup组件集合时的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of recommender systems for mashup composition
Web mashups are a new generation of applications created by composing contents and functions available through Web services and APIs. A central activity in mashup development is the retrieval and selection of components to be included in the composition. The adoption of recommender systems can alleviate some of the difficulties arising in this activity. Based on the results of an empirical study, this paper tries to shed light on the application of recommender systems to the mashup composition domain, and discusses the performance of different recommendation systems when applied to a very large collection of mashups and mashup components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信