半圆板稳态温度分布的拉普拉斯方程解析解与数值解的比较研究

Ganesh Bahadur Basnet
{"title":"半圆板稳态温度分布的拉普拉斯方程解析解与数值解的比较研究","authors":"Ganesh Bahadur Basnet","doi":"10.3126/jnms.v5i1.47371","DOIUrl":null,"url":null,"abstract":"In this paper numerical methods have been used to solve two dimensional steady state heat flow problem in polar coordinates with Dirichlet boundary conditions inside a semi-circular plate and the work focuses on the numerical methods for solving Laplace equation; finite difference schemes and Gauss elimination method. The numerical solution is compared with exact solution of the same problem. Finally, we analyze the absolute error in different number of iterations to check the accuracy of schemes.","PeriodicalId":401623,"journal":{"name":"Journal of Nepal Mathematical Society","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of Analytic and Numerical Solutions of Steady-state Temperature Distribution on Semi-circular Plate Using Laplace Equation\",\"authors\":\"Ganesh Bahadur Basnet\",\"doi\":\"10.3126/jnms.v5i1.47371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper numerical methods have been used to solve two dimensional steady state heat flow problem in polar coordinates with Dirichlet boundary conditions inside a semi-circular plate and the work focuses on the numerical methods for solving Laplace equation; finite difference schemes and Gauss elimination method. The numerical solution is compared with exact solution of the same problem. Finally, we analyze the absolute error in different number of iterations to check the accuracy of schemes.\",\"PeriodicalId\":401623,\"journal\":{\"name\":\"Journal of Nepal Mathematical Society\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nepal Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/jnms.v5i1.47371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jnms.v5i1.47371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文用数值方法求解了具有Dirichlet边界条件的极坐标下半圆板内二维稳态热流问题,重点讨论了求解Laplace方程的数值方法;有限差分格式和高斯消元法。将数值解与同一问题的精确解进行了比较。最后,对不同迭代次数下的绝对误差进行了分析,以检验方案的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study of Analytic and Numerical Solutions of Steady-state Temperature Distribution on Semi-circular Plate Using Laplace Equation
In this paper numerical methods have been used to solve two dimensional steady state heat flow problem in polar coordinates with Dirichlet boundary conditions inside a semi-circular plate and the work focuses on the numerical methods for solving Laplace equation; finite difference schemes and Gauss elimination method. The numerical solution is compared with exact solution of the same problem. Finally, we analyze the absolute error in different number of iterations to check the accuracy of schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信