平面网络中最小切割和最大流量的并行算法

Donald B. Johnson, S. M. Venkatesan
{"title":"平面网络中最小切割和最大流量的并行算法","authors":"Donald B. Johnson, S. M. Venkatesan","doi":"10.1145/31846.31849","DOIUrl":null,"url":null,"abstract":"Algorithms are given that compute maximum flows in planar directed networks either in O((logn)3) parallel time using O(n4) processors or O((logn)2) parallel time using O(n6) processors. The resource consumption of these algorithms is dominated by the cost of finding the value of a maximum flow. When such a value is given, or when the computation is on an undirected network, the bound is O((logn)2) time using O(n4) processors. No efficient parallel algorithm is known for the maximum flow problem in general networks.","PeriodicalId":127919,"journal":{"name":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Parallel algorithms for minimum cuts and maximum flows in planar networks\",\"authors\":\"Donald B. Johnson, S. M. Venkatesan\",\"doi\":\"10.1145/31846.31849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithms are given that compute maximum flows in planar directed networks either in O((logn)3) parallel time using O(n4) processors or O((logn)2) parallel time using O(n6) processors. The resource consumption of these algorithms is dominated by the cost of finding the value of a maximum flow. When such a value is given, or when the computation is on an undirected network, the bound is O((logn)2) time using O(n4) processors. No efficient parallel algorithm is known for the maximum flow problem in general networks.\",\"PeriodicalId\":127919,\"journal\":{\"name\":\"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/31846.31849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/31846.31849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

给出了使用O(n4)处理器在O((logn)3)并行时间内或使用O(n6)处理器在O((logn)2)并行时间内计算平面有向网络中最大流量的算法。这些算法的资源消耗主要取决于寻找最大流量值的成本。当给定这样的值时,或者当计算在无向网络上时,使用O(n4)个处理器,边界是O((logn)2)时间。对于一般网络中的最大流问题,目前还没有有效的并行算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel algorithms for minimum cuts and maximum flows in planar networks
Algorithms are given that compute maximum flows in planar directed networks either in O((logn)3) parallel time using O(n4) processors or O((logn)2) parallel time using O(n6) processors. The resource consumption of these algorithms is dominated by the cost of finding the value of a maximum flow. When such a value is given, or when the computation is on an undirected network, the bound is O((logn)2) time using O(n4) processors. No efficient parallel algorithm is known for the maximum flow problem in general networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信