重新思考非易失性存储器的近阈值多处理器设计

Xiang Pan, Anys Bacha, R. Teodorescu
{"title":"重新思考非易失性存储器的近阈值多处理器设计","authors":"Xiang Pan, Anys Bacha, R. Teodorescu","doi":"10.1109/IPDPS.2017.109","DOIUrl":null,"url":null,"abstract":"Near-threshold computing is emerging as a promising energy-efficient alternative for power-constrained environments. Unfortunately, aggressive reduction in supply voltage to the near-threshold range, albeit effective, faces a host of challenges. This includes higher relative leakage power and high error rates, particularly in dense SRAM structures such as on-chip caches. This paper presents an architecture that rethinks the cache hierarchy in near-threshold multiprocessors. Our design uses STT-RAM to implement all on-chip caches. STT-RAM has several advantages over SRAM at low voltages including low leakage, high density, and reliability. The design consolidates the private caches of near-threshold cores into shared L1 instruction/data caches organized in clusters. We find that our consolidated cache design can service more than 95% of incoming requests within a single cycle. We demonstrate that eliminating the coherence traffic associated with private caches results in a performance boost of 11%. In addition, we propose a hardware-based core management system that dynamically consolidates virtual cores into variable numbers of physical cores to increase resource efficiency. We demonstrate that this approach can save up to 33% in energy.","PeriodicalId":209524,"journal":{"name":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Respin: Rethinking Near-Threshold Multiprocessor Design with Non-volatile Memory\",\"authors\":\"Xiang Pan, Anys Bacha, R. Teodorescu\",\"doi\":\"10.1109/IPDPS.2017.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-threshold computing is emerging as a promising energy-efficient alternative for power-constrained environments. Unfortunately, aggressive reduction in supply voltage to the near-threshold range, albeit effective, faces a host of challenges. This includes higher relative leakage power and high error rates, particularly in dense SRAM structures such as on-chip caches. This paper presents an architecture that rethinks the cache hierarchy in near-threshold multiprocessors. Our design uses STT-RAM to implement all on-chip caches. STT-RAM has several advantages over SRAM at low voltages including low leakage, high density, and reliability. The design consolidates the private caches of near-threshold cores into shared L1 instruction/data caches organized in clusters. We find that our consolidated cache design can service more than 95% of incoming requests within a single cycle. We demonstrate that eliminating the coherence traffic associated with private caches results in a performance boost of 11%. In addition, we propose a hardware-based core management system that dynamically consolidates virtual cores into variable numbers of physical cores to increase resource efficiency. We demonstrate that this approach can save up to 33% in energy.\",\"PeriodicalId\":209524,\"journal\":{\"name\":\"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2017.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2017.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近阈值计算正在成为一种有前途的节能替代方案,适用于功率受限的环境。不幸的是,将电源电压大幅降低到接近阈值的范围,尽管有效,但面临着许多挑战。这包括更高的相对泄漏功率和高错误率,特别是在密集的SRAM结构中,如片上缓存。本文提出了一种重新考虑近阈值多处理器缓存层次结构的体系结构。我们的设计使用STT-RAM来实现所有片上缓存。STT-RAM在低电压下比SRAM有几个优点,包括低泄漏、高密度和可靠性。该设计将近阈值内核的私有缓存合并到集群中组织的共享L1指令/数据缓存中。我们发现我们的统一缓存设计可以在一个周期内服务超过95%的传入请求。我们证明,消除与私有缓存相关的相干流量可使性能提高11%。此外,我们提出了一种基于硬件的核心管理系统,该系统动态地将虚拟核心合并为可变数量的物理核心,以提高资源效率。我们证明,这种方法可以节省高达33%的能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Respin: Rethinking Near-Threshold Multiprocessor Design with Non-volatile Memory
Near-threshold computing is emerging as a promising energy-efficient alternative for power-constrained environments. Unfortunately, aggressive reduction in supply voltage to the near-threshold range, albeit effective, faces a host of challenges. This includes higher relative leakage power and high error rates, particularly in dense SRAM structures such as on-chip caches. This paper presents an architecture that rethinks the cache hierarchy in near-threshold multiprocessors. Our design uses STT-RAM to implement all on-chip caches. STT-RAM has several advantages over SRAM at low voltages including low leakage, high density, and reliability. The design consolidates the private caches of near-threshold cores into shared L1 instruction/data caches organized in clusters. We find that our consolidated cache design can service more than 95% of incoming requests within a single cycle. We demonstrate that eliminating the coherence traffic associated with private caches results in a performance boost of 11%. In addition, we propose a hardware-based core management system that dynamically consolidates virtual cores into variable numbers of physical cores to increase resource efficiency. We demonstrate that this approach can save up to 33% in energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信