基于随机优化的能效状态估计

Luxmiram Vijayandran, K. Kansanen, Maite Brandt-Pearcey, T. Ekman
{"title":"基于随机优化的能效状态估计","authors":"Luxmiram Vijayandran, K. Kansanen, Maite Brandt-Pearcey, T. Ekman","doi":"10.1109/SPAWC.2011.5990401","DOIUrl":null,"url":null,"abstract":"We address the design of energy efficient state estimation in wireless sensor networks satisfying a desired average accuracy constraint over a time-varying channel. We propose a new radio resource allocation policy based on Lyapunov drift stochastic optimization to be used with a standard Kalman filter estimator. The salient feature of the framework is that it can achieve arbitrarily close to optimal power efficiency over time without requiring knowledge of the channel statistics or future events. Asymptotic optimal performance is achieved at the expense of an increase in latency for the system to converge to the desired estimation accuracy. The explicit trade-off is governed by a tunable parameter V. This work unifies notions of estimation and network control optimization.","PeriodicalId":102244,"journal":{"name":"2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications","volume":"53 55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy efficient state estimation through stochastic optimization\",\"authors\":\"Luxmiram Vijayandran, K. Kansanen, Maite Brandt-Pearcey, T. Ekman\",\"doi\":\"10.1109/SPAWC.2011.5990401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the design of energy efficient state estimation in wireless sensor networks satisfying a desired average accuracy constraint over a time-varying channel. We propose a new radio resource allocation policy based on Lyapunov drift stochastic optimization to be used with a standard Kalman filter estimator. The salient feature of the framework is that it can achieve arbitrarily close to optimal power efficiency over time without requiring knowledge of the channel statistics or future events. Asymptotic optimal performance is achieved at the expense of an increase in latency for the system to converge to the desired estimation accuracy. The explicit trade-off is governed by a tunable parameter V. This work unifies notions of estimation and network control optimization.\",\"PeriodicalId\":102244,\"journal\":{\"name\":\"2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications\",\"volume\":\"53 55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2011.5990401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2011.5990401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们解决了无线传感器网络中满足时变信道上期望的平均精度约束的节能状态估计设计。提出了一种基于李雅普诺夫漂移随机优化的无线电资源分配策略,并与标准卡尔曼滤波估计器配合使用。该框架的显著特征是,随着时间的推移,它可以实现任意接近最优的功率效率,而不需要了解信道统计信息或未来事件。渐近最优性能是以增加系统收敛到期望的估计精度的延迟为代价的。显式权衡由可调参数v控制。这项工作统一了估计和网络控制优化的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy efficient state estimation through stochastic optimization
We address the design of energy efficient state estimation in wireless sensor networks satisfying a desired average accuracy constraint over a time-varying channel. We propose a new radio resource allocation policy based on Lyapunov drift stochastic optimization to be used with a standard Kalman filter estimator. The salient feature of the framework is that it can achieve arbitrarily close to optimal power efficiency over time without requiring knowledge of the channel statistics or future events. Asymptotic optimal performance is achieved at the expense of an increase in latency for the system to converge to the desired estimation accuracy. The explicit trade-off is governed by a tunable parameter V. This work unifies notions of estimation and network control optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信