基于数据融合的移动机器人位置估计

E. Stella, G. Cicirelli, F.P. Lovergine, A. Distante
{"title":"基于数据融合的移动机器人位置估计","authors":"E. Stella, G. Cicirelli, F.P. Lovergine, A. Distante","doi":"10.1109/ISIC.1995.525115","DOIUrl":null,"url":null,"abstract":"This paper describes a position estimation technique based on the fusion of data obtained by two independent subsystems in a mobile robot navigation context. The first subsystem is a self-location one composed of an onboard camera, an onboard image processing unit and artificial landmarks; the second one is a dead-reckoning subsystem based on odometry. The robot navigation system integrates the position estimation obtained by the vision subsystem with the position estimated by odometry using a Kalman filter framework.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Position estimation for a mobile robot using data fusion\",\"authors\":\"E. Stella, G. Cicirelli, F.P. Lovergine, A. Distante\",\"doi\":\"10.1109/ISIC.1995.525115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a position estimation technique based on the fusion of data obtained by two independent subsystems in a mobile robot navigation context. The first subsystem is a self-location one composed of an onboard camera, an onboard image processing unit and artificial landmarks; the second one is a dead-reckoning subsystem based on odometry. The robot navigation system integrates the position estimation obtained by the vision subsystem with the position estimated by odometry using a Kalman filter framework.\",\"PeriodicalId\":219623,\"journal\":{\"name\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1995.525115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在移动机器人导航环境下,提出了一种基于两个独立子系统数据融合的位置估计技术。第一个子系统是自定位子系统,由机载摄像机、机载图像处理单元和人工地标组成;二是基于里程计的航位推算子系统。机器人导航系统采用卡尔曼滤波框架,将视觉子系统得到的位置估计与里程计得到的位置估计相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Position estimation for a mobile robot using data fusion
This paper describes a position estimation technique based on the fusion of data obtained by two independent subsystems in a mobile robot navigation context. The first subsystem is a self-location one composed of an onboard camera, an onboard image processing unit and artificial landmarks; the second one is a dead-reckoning subsystem based on odometry. The robot navigation system integrates the position estimation obtained by the vision subsystem with the position estimated by odometry using a Kalman filter framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信