J. Jovanović, D. Gašević, A. Pardo, S. Dawson, A. Whitelock-Wainwright
{"title":"引入点击的意义:自我效能感和认知负荷的追踪测量","authors":"J. Jovanović, D. Gašević, A. Pardo, S. Dawson, A. Whitelock-Wainwright","doi":"10.1145/3303772.3303782","DOIUrl":null,"url":null,"abstract":"The use of learning trace data together with various analytical methods has proven successful in detecting patterns in learning behaviour, identifying student profiles, and clustering learning resources. However, interpretation of the findings is often difficult and uncertain due to a lack of contextual data (e.g., data on student motivation, emotion or curriculum design). In this study we explored the integration of student self-reports about cognitive load and self-efficacy into the learning process and collection of relevant students' perceptions as learning traces. Our objective was to examine the association of traced measures of relevant learning constructs (cognitive load and self-efficacy) with i) indicators of the students' learning behaviour derived from trace data, and ii) the students' academic performance. The results indicated the presence of association between some indicators of students' engagement with learning activities and traced measures of cognitive load and self-efficacy. Correlational analysis demonstrated significant positive correlation between the students' course performance and traced measures of cognitive load and self-efficacy.","PeriodicalId":382957,"journal":{"name":"Proceedings of the 9th International Conference on Learning Analytics & Knowledge","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Introducing meaning to clicks: Towards traced-measures of self-efficacy and cognitive load\",\"authors\":\"J. Jovanović, D. Gašević, A. Pardo, S. Dawson, A. Whitelock-Wainwright\",\"doi\":\"10.1145/3303772.3303782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of learning trace data together with various analytical methods has proven successful in detecting patterns in learning behaviour, identifying student profiles, and clustering learning resources. However, interpretation of the findings is often difficult and uncertain due to a lack of contextual data (e.g., data on student motivation, emotion or curriculum design). In this study we explored the integration of student self-reports about cognitive load and self-efficacy into the learning process and collection of relevant students' perceptions as learning traces. Our objective was to examine the association of traced measures of relevant learning constructs (cognitive load and self-efficacy) with i) indicators of the students' learning behaviour derived from trace data, and ii) the students' academic performance. The results indicated the presence of association between some indicators of students' engagement with learning activities and traced measures of cognitive load and self-efficacy. Correlational analysis demonstrated significant positive correlation between the students' course performance and traced measures of cognitive load and self-efficacy.\",\"PeriodicalId\":382957,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Learning Analytics & Knowledge\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Learning Analytics & Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3303772.3303782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3303772.3303782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Introducing meaning to clicks: Towards traced-measures of self-efficacy and cognitive load
The use of learning trace data together with various analytical methods has proven successful in detecting patterns in learning behaviour, identifying student profiles, and clustering learning resources. However, interpretation of the findings is often difficult and uncertain due to a lack of contextual data (e.g., data on student motivation, emotion or curriculum design). In this study we explored the integration of student self-reports about cognitive load and self-efficacy into the learning process and collection of relevant students' perceptions as learning traces. Our objective was to examine the association of traced measures of relevant learning constructs (cognitive load and self-efficacy) with i) indicators of the students' learning behaviour derived from trace data, and ii) the students' academic performance. The results indicated the presence of association between some indicators of students' engagement with learning activities and traced measures of cognitive load and self-efficacy. Correlational analysis demonstrated significant positive correlation between the students' course performance and traced measures of cognitive load and self-efficacy.