带有多余零的负二项图模型

Beomjin Park, Hosik Choi, Changyi Park
{"title":"带有多余零的负二项图模型","authors":"Beomjin Park, Hosik Choi, Changyi Park","doi":"10.1002/sam.11536","DOIUrl":null,"url":null,"abstract":"Markov random field or undirected graphical models (GM) are a popular class of GM useful in various fields because they provide an intuitive and interpretable graph expressing the complex relationship between random variables. The zero‐inflated local Poisson graphical model has been proposed as a graphical model for count data with excess zeros. However, as count data are often characterized by over‐dispersion, the local Poisson graphical model may suffer from a poor fit to data. In this paper, we propose a zero‐inflated local negative binomial (NB) graphical model. Due to the dependencies of parameters in our models, a direct optimization of the objective function is difficult. Instead, we devise expectation‐minimization algorithms based on two different parametrizations for the NB distribution. Through a simulation study, we illustrate the effectiveness of our method for learning network structure from over‐dispersed count data with excess zeros. We further apply our method to real data to estimate its network structure.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Negative binomial graphical model with excess zeros\",\"authors\":\"Beomjin Park, Hosik Choi, Changyi Park\",\"doi\":\"10.1002/sam.11536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markov random field or undirected graphical models (GM) are a popular class of GM useful in various fields because they provide an intuitive and interpretable graph expressing the complex relationship between random variables. The zero‐inflated local Poisson graphical model has been proposed as a graphical model for count data with excess zeros. However, as count data are often characterized by over‐dispersion, the local Poisson graphical model may suffer from a poor fit to data. In this paper, we propose a zero‐inflated local negative binomial (NB) graphical model. Due to the dependencies of parameters in our models, a direct optimization of the objective function is difficult. Instead, we devise expectation‐minimization algorithms based on two different parametrizations for the NB distribution. Through a simulation study, we illustrate the effectiveness of our method for learning network structure from over‐dispersed count data with excess zeros. We further apply our method to real data to estimate its network structure.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

马尔可夫随机场或无向图模型(GM)是一类流行的GM,因为它们提供了一个直观的和可解释的图来表达随机变量之间的复杂关系,在各个领域都很有用。提出了零膨胀局部泊松图模型作为计数数据中有多余零的图形模型。然而,由于计数数据通常具有过分散的特征,局部泊松图模型可能与数据拟合较差。本文提出了一个零膨胀局部负二项(NB)图模型。由于模型中参数的依赖性,目标函数的直接优化是困难的。相反,我们设计了基于NB分布的两种不同参数化的期望最小化算法。通过仿真研究,我们证明了我们的方法在从带有多余零的过分散计数数据中学习网络结构的有效性。我们进一步将我们的方法应用到实际数据中来估计其网络结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Negative binomial graphical model with excess zeros
Markov random field or undirected graphical models (GM) are a popular class of GM useful in various fields because they provide an intuitive and interpretable graph expressing the complex relationship between random variables. The zero‐inflated local Poisson graphical model has been proposed as a graphical model for count data with excess zeros. However, as count data are often characterized by over‐dispersion, the local Poisson graphical model may suffer from a poor fit to data. In this paper, we propose a zero‐inflated local negative binomial (NB) graphical model. Due to the dependencies of parameters in our models, a direct optimization of the objective function is difficult. Instead, we devise expectation‐minimization algorithms based on two different parametrizations for the NB distribution. Through a simulation study, we illustrate the effectiveness of our method for learning network structure from over‐dispersed count data with excess zeros. We further apply our method to real data to estimate its network structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信