使用自校准的抢占式电流控制,改善了物联网应用中具有重复负载概况的DC-DC转换器的动态特性

D. K. Li, Z. Gong, M. Rose, H. Bergveld, O. Trescases
{"title":"使用自校准的抢占式电流控制,改善了物联网应用中具有重复负载概况的DC-DC转换器的动态特性","authors":"D. K. Li, Z. Gong, M. Rose, H. Bergveld, O. Trescases","doi":"10.1109/APEC.2017.7931177","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to improve the dynamic response of inductive dc-dc converters in applications having repetitive load profiles. In many Internet-of-Things (IoT) applications, such as wireless sensor networks (WSN), the load current profile has a periodic nature, and is therefore predictable by the power management circuits. This unique nature is exploited by the proposed Preemptive Concurrent Controller (PCC) to achieve a dynamic response superior to the theoretical limits of time-optimal control. The preemptive controller ramps up the inductor current prior to the occurrence of a load step and reduces the required output capacitance. The non-inverting buck-boost converter is used in this work and operates with a freewheeling mode that avoids output voltage overshoot during the preemptive inductor current ramp. Two hysteric control loops operate concurrently to define the freewheeling interval. A simple digital calibration scheme is demonstrated to extract timing and amplitude features from a load current profile in order to optimize the timing of the preemptive current reference in the next cycle. Freewheeling is thus minimized to increase system efficiency. The PCC and associated load profile learning algorithm is experimentally verified and uses 10× less capacitance compared to the time-optimal control benchmark.","PeriodicalId":201289,"journal":{"name":"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improved dynamics in DC-DC converters for IoT applications with repetitive load profiles using self-calibrated preemptive current control\",\"authors\":\"D. K. Li, Z. Gong, M. Rose, H. Bergveld, O. Trescases\",\"doi\":\"10.1109/APEC.2017.7931177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to improve the dynamic response of inductive dc-dc converters in applications having repetitive load profiles. In many Internet-of-Things (IoT) applications, such as wireless sensor networks (WSN), the load current profile has a periodic nature, and is therefore predictable by the power management circuits. This unique nature is exploited by the proposed Preemptive Concurrent Controller (PCC) to achieve a dynamic response superior to the theoretical limits of time-optimal control. The preemptive controller ramps up the inductor current prior to the occurrence of a load step and reduces the required output capacitance. The non-inverting buck-boost converter is used in this work and operates with a freewheeling mode that avoids output voltage overshoot during the preemptive inductor current ramp. Two hysteric control loops operate concurrently to define the freewheeling interval. A simple digital calibration scheme is demonstrated to extract timing and amplitude features from a load current profile in order to optimize the timing of the preemptive current reference in the next cycle. Freewheeling is thus minimized to increase system efficiency. The PCC and associated load profile learning algorithm is experimentally verified and uses 10× less capacitance compared to the time-optimal control benchmark.\",\"PeriodicalId\":201289,\"journal\":{\"name\":\"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2017.7931177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2017.7931177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种在具有重复负载曲线的应用中改善电感式dc-dc变换器动态响应的新方法。在许多物联网(IoT)应用中,例如无线传感器网络(WSN),负载电流分布具有周期性,因此可以通过电源管理电路进行预测。所提出的抢占式并发控制器(PCC)利用这种独特的特性来实现优于时间最优控制理论极限的动态响应。抢占式控制器在负载阶跃发生之前提高电感电流,并降低所需的输出电容。在这项工作中使用了非反相降压升压转换器,并以自由模式工作,避免了在抢占式电感电流斜坡期间输出电压过调。两个迟滞控制回路同时工作,以确定自由浮动区间。演示了一种简单的数字校准方案,从负载电流分布中提取时序和幅值特征,以便在下一个周期中优化抢占式电流参考的时序。因此,自由裁量被最小化,以提高系统效率。PCC和相关负载轮廓学习算法经过实验验证,与时间最优控制基准相比,使用的电容减少了10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved dynamics in DC-DC converters for IoT applications with repetitive load profiles using self-calibrated preemptive current control
This paper presents a novel approach to improve the dynamic response of inductive dc-dc converters in applications having repetitive load profiles. In many Internet-of-Things (IoT) applications, such as wireless sensor networks (WSN), the load current profile has a periodic nature, and is therefore predictable by the power management circuits. This unique nature is exploited by the proposed Preemptive Concurrent Controller (PCC) to achieve a dynamic response superior to the theoretical limits of time-optimal control. The preemptive controller ramps up the inductor current prior to the occurrence of a load step and reduces the required output capacitance. The non-inverting buck-boost converter is used in this work and operates with a freewheeling mode that avoids output voltage overshoot during the preemptive inductor current ramp. Two hysteric control loops operate concurrently to define the freewheeling interval. A simple digital calibration scheme is demonstrated to extract timing and amplitude features from a load current profile in order to optimize the timing of the preemptive current reference in the next cycle. Freewheeling is thus minimized to increase system efficiency. The PCC and associated load profile learning algorithm is experimentally verified and uses 10× less capacitance compared to the time-optimal control benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信