Zhao Jin, Munawar Hayat, Yuwei Yang, Yulan Guo, Yinjie Lei
{"title":"3d语言预训练的上下文感知对齐和相互屏蔽","authors":"Zhao Jin, Munawar Hayat, Yuwei Yang, Yulan Guo, Yinjie Lei","doi":"10.1109/CVPR52729.2023.01057","DOIUrl":null,"url":null,"abstract":"3D visual language reasoning plays an important role in effective human-computer interaction. The current approaches for 3D visual reasoning are task-specific, and lack pre-training methods to learn generic representations that can transfer across various tasks. Despite the encouraging progress in vision-language pre-training for image-text data, 3D-language pre-training is still an open issue due to limited 3D-language paired data, highly sparse and irregular structure of point clouds and ambiguities in spatial relations of 3D objects with viewpoint changes. In this paper, we present a generic 3D-language pre-training approach, that tackles multiple facets of 3D-language reasoning by learning universal representations. Our learning objective constitutes two main parts. 1) Context aware spatial-semantic alignment to establish fine-grained correspondence between point clouds and texts. It reduces relational ambiguities by aligning 3D spatial relationships with textual semantic context. 2) Mutual 3D-Language Masked modeling to enable cross-modality information exchange. Instead of reconstructing sparse 3D points for which language can hardly provide cues, we propose masked proposal reasoning to learn semantic class and mask-invariant representations. Our proposed 3D-language pre-training method achieves promising results once adapted to various downstream tasks, including 3D visual grounding, 3D dense captioning and 3D question answering. Our codes are available at https://github.com/leolyj/3D-VLP","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Context-aware Alignment and Mutual Masking for 3D-Language Pre-training\",\"authors\":\"Zhao Jin, Munawar Hayat, Yuwei Yang, Yulan Guo, Yinjie Lei\",\"doi\":\"10.1109/CVPR52729.2023.01057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D visual language reasoning plays an important role in effective human-computer interaction. The current approaches for 3D visual reasoning are task-specific, and lack pre-training methods to learn generic representations that can transfer across various tasks. Despite the encouraging progress in vision-language pre-training for image-text data, 3D-language pre-training is still an open issue due to limited 3D-language paired data, highly sparse and irregular structure of point clouds and ambiguities in spatial relations of 3D objects with viewpoint changes. In this paper, we present a generic 3D-language pre-training approach, that tackles multiple facets of 3D-language reasoning by learning universal representations. Our learning objective constitutes two main parts. 1) Context aware spatial-semantic alignment to establish fine-grained correspondence between point clouds and texts. It reduces relational ambiguities by aligning 3D spatial relationships with textual semantic context. 2) Mutual 3D-Language Masked modeling to enable cross-modality information exchange. Instead of reconstructing sparse 3D points for which language can hardly provide cues, we propose masked proposal reasoning to learn semantic class and mask-invariant representations. Our proposed 3D-language pre-training method achieves promising results once adapted to various downstream tasks, including 3D visual grounding, 3D dense captioning and 3D question answering. Our codes are available at https://github.com/leolyj/3D-VLP\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.01057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context-aware Alignment and Mutual Masking for 3D-Language Pre-training
3D visual language reasoning plays an important role in effective human-computer interaction. The current approaches for 3D visual reasoning are task-specific, and lack pre-training methods to learn generic representations that can transfer across various tasks. Despite the encouraging progress in vision-language pre-training for image-text data, 3D-language pre-training is still an open issue due to limited 3D-language paired data, highly sparse and irregular structure of point clouds and ambiguities in spatial relations of 3D objects with viewpoint changes. In this paper, we present a generic 3D-language pre-training approach, that tackles multiple facets of 3D-language reasoning by learning universal representations. Our learning objective constitutes two main parts. 1) Context aware spatial-semantic alignment to establish fine-grained correspondence between point clouds and texts. It reduces relational ambiguities by aligning 3D spatial relationships with textual semantic context. 2) Mutual 3D-Language Masked modeling to enable cross-modality information exchange. Instead of reconstructing sparse 3D points for which language can hardly provide cues, we propose masked proposal reasoning to learn semantic class and mask-invariant representations. Our proposed 3D-language pre-training method achieves promising results once adapted to various downstream tasks, including 3D visual grounding, 3D dense captioning and 3D question answering. Our codes are available at https://github.com/leolyj/3D-VLP