{"title":"SMCC加权的种、泛函子和泰勒展开:非确定性、概率性和量子程序建模的统一框架","authors":"Takeshi Tsukada, Kazuyuki Asada, C. Ong","doi":"10.1145/3209108.3209157","DOIUrl":null,"url":null,"abstract":"Motivated by a tight connection between Joyal's combinatorial species and quantitative models of linear logic, this paper introduces weighted generalised species (or weighted profunctors), where weights are morphisms of a given symmetric monoidal closed category (SMCC). For each SMCC W, we show that the category of W-weighted profunctors is a Lafont category, a categorical model of linear logic with exponential. As a model of programming languages, the construction of this paper gives a unified framework that induces adequate models of nondeterministic, probabilistic, algebraic and quantum programming languages by an appropriate choice of the weight SMCC.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Species, Profunctors and Taylor Expansion Weighted by SMCC: A Unified Framework for Modelling Nondeterministic, Probabilistic and Quantum Programs\",\"authors\":\"Takeshi Tsukada, Kazuyuki Asada, C. Ong\",\"doi\":\"10.1145/3209108.3209157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by a tight connection between Joyal's combinatorial species and quantitative models of linear logic, this paper introduces weighted generalised species (or weighted profunctors), where weights are morphisms of a given symmetric monoidal closed category (SMCC). For each SMCC W, we show that the category of W-weighted profunctors is a Lafont category, a categorical model of linear logic with exponential. As a model of programming languages, the construction of this paper gives a unified framework that induces adequate models of nondeterministic, probabilistic, algebraic and quantum programming languages by an appropriate choice of the weight SMCC.\",\"PeriodicalId\":389131,\"journal\":{\"name\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209108.3209157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Species, Profunctors and Taylor Expansion Weighted by SMCC: A Unified Framework for Modelling Nondeterministic, Probabilistic and Quantum Programs
Motivated by a tight connection between Joyal's combinatorial species and quantitative models of linear logic, this paper introduces weighted generalised species (or weighted profunctors), where weights are morphisms of a given symmetric monoidal closed category (SMCC). For each SMCC W, we show that the category of W-weighted profunctors is a Lafont category, a categorical model of linear logic with exponential. As a model of programming languages, the construction of this paper gives a unified framework that induces adequate models of nondeterministic, probabilistic, algebraic and quantum programming languages by an appropriate choice of the weight SMCC.