结合视觉与听觉特征的音乐类型分类

Ming-Ju Wu, Zhi-Sheng Chen, J. Jang, Jia-Min Ren, Yi-Hsung Li, Chun-Hung Lu
{"title":"结合视觉与听觉特征的音乐类型分类","authors":"Ming-Ju Wu, Zhi-Sheng Chen, J. Jang, Jia-Min Ren, Yi-Hsung Li, Chun-Hung Lu","doi":"10.1109/ICMLA.2011.48","DOIUrl":null,"url":null,"abstract":"Music genre classification is a challenging task in the field of music information retrieval. Existing approaches usually attempt to extract features only from acoustic aspect. However, spectrogram also provides useful information because it describes the temporal change of energy distribution over frequency bins. In this paper, we propose the use of Gabor filters to generate effective visual features that can capture the characteristics of a spectrogram¡¦s texture patterns. On the other hand, acoustic features are extracted using universal background model and maximum a posteriori adaptation. Based on these two types of features, we then employ SVM to perform the final classification task. Experimental results demonstrate that combining visual and acoustic features can achieve satisfactory classification accuracy on two widely used datasets.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Combining Visual and Acoustic Features for Music Genre Classification\",\"authors\":\"Ming-Ju Wu, Zhi-Sheng Chen, J. Jang, Jia-Min Ren, Yi-Hsung Li, Chun-Hung Lu\",\"doi\":\"10.1109/ICMLA.2011.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Music genre classification is a challenging task in the field of music information retrieval. Existing approaches usually attempt to extract features only from acoustic aspect. However, spectrogram also provides useful information because it describes the temporal change of energy distribution over frequency bins. In this paper, we propose the use of Gabor filters to generate effective visual features that can capture the characteristics of a spectrogram¡¦s texture patterns. On the other hand, acoustic features are extracted using universal background model and maximum a posteriori adaptation. Based on these two types of features, we then employ SVM to perform the final classification task. Experimental results demonstrate that combining visual and acoustic features can achieve satisfactory classification accuracy on two widely used datasets.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

在音乐信息检索领域,音乐体裁分类是一项具有挑战性的任务。现有的方法通常只尝试从声学方面提取特征。然而,谱图也提供了有用的信息,因为它描述了能量分布在频率箱上的时间变化。在本文中,我们提出使用Gabor滤波器来生成有效的视觉特征,可以捕获光谱图纹理模式的特征。另一方面,采用通用背景模型和最大后验自适应提取声学特征。基于这两种类型的特征,我们使用支持向量机来执行最终的分类任务。实验结果表明,在两个广泛使用的数据集上,结合视觉和听觉特征可以获得满意的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Visual and Acoustic Features for Music Genre Classification
Music genre classification is a challenging task in the field of music information retrieval. Existing approaches usually attempt to extract features only from acoustic aspect. However, spectrogram also provides useful information because it describes the temporal change of energy distribution over frequency bins. In this paper, we propose the use of Gabor filters to generate effective visual features that can capture the characteristics of a spectrogram¡¦s texture patterns. On the other hand, acoustic features are extracted using universal background model and maximum a posteriori adaptation. Based on these two types of features, we then employ SVM to perform the final classification task. Experimental results demonstrate that combining visual and acoustic features can achieve satisfactory classification accuracy on two widely used datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信