通过独立的顶点中心过程快速发现社区结构局部

M. Canu, Marcin Detyniecki, Marie-Jeanne Lesot, Adrien Revault d'Allonnes
{"title":"通过独立的顶点中心过程快速发现社区结构局部","authors":"M. Canu, Marcin Detyniecki, Marie-Jeanne Lesot, Adrien Revault d'Allonnes","doi":"10.1145/2808797.2808866","DOIUrl":null,"url":null,"abstract":"This paper addresses the task of community detection and proposes a local approach based on a distributed list building, where each vertex broadcasts basic information that only depends on its degree and that of its neighbours. A decentralised external process then unveils the community structure. The relevance of the proposed method is experimentally shown on both artificial and real data.","PeriodicalId":371988,"journal":{"name":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fast community structure local uncovering by independent vertex-centred process\",\"authors\":\"M. Canu, Marcin Detyniecki, Marie-Jeanne Lesot, Adrien Revault d'Allonnes\",\"doi\":\"10.1145/2808797.2808866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the task of community detection and proposes a local approach based on a distributed list building, where each vertex broadcasts basic information that only depends on its degree and that of its neighbours. A decentralised external process then unveils the community structure. The relevance of the proposed method is experimentally shown on both artificial and real data.\",\"PeriodicalId\":371988,\"journal\":{\"name\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808797.2808866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808797.2808866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文解决了社区检测的任务,并提出了一种基于分布式列表构建的局部方法,其中每个顶点广播的基本信息仅取决于其程度及其邻居的程度。然后,分散的外部流程揭示了社区结构。在人工数据和实际数据上均证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast community structure local uncovering by independent vertex-centred process
This paper addresses the task of community detection and proposes a local approach based on a distributed list building, where each vertex broadcasts basic information that only depends on its degree and that of its neighbours. A decentralised external process then unveils the community structure. The relevance of the proposed method is experimentally shown on both artificial and real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信