基于均值滤波去噪FCM算法的高斯核性能及评价

Nookala Venu
{"title":"基于均值滤波去噪FCM算法的高斯核性能及评价","authors":"Nookala Venu","doi":"10.1109/ICCSP.2014.6950134","DOIUrl":null,"url":null,"abstract":"In this paper, a new segmentation algorithm with the integration of mean and peak-and-valley filtering based denoising and Gaussian kernels based fuzzy c-means (MPVKFCM) algorithm is proposed for medical image segmentation. First, the image is denoised by using the mean and peak-and-valley filtering algorithm. Secondly, image segmentation algorithm with Gaussian kernels based fuzzy c-means is performed on the denoised image. The performance of the proposed algorithm is tested on OASIS-MRI image dataset. The performance is tested in terms of score, number of iterations (NI), Execution time and (TM) under different Gaussian noises on OASIS-MRI dataset. The results after investigation, the proposed method shows a significant improvement as compared to other existing methods in terms of Score, NI and TM under different Gaussian noises on OASIS-MRI dataset.","PeriodicalId":149965,"journal":{"name":"2014 International Conference on Communication and Signal Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Performance and evalution of Guassian kernals for FCM algorithm with mean filtering based denoising for MRI segmentation\",\"authors\":\"Nookala Venu\",\"doi\":\"10.1109/ICCSP.2014.6950134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new segmentation algorithm with the integration of mean and peak-and-valley filtering based denoising and Gaussian kernels based fuzzy c-means (MPVKFCM) algorithm is proposed for medical image segmentation. First, the image is denoised by using the mean and peak-and-valley filtering algorithm. Secondly, image segmentation algorithm with Gaussian kernels based fuzzy c-means is performed on the denoised image. The performance of the proposed algorithm is tested on OASIS-MRI image dataset. The performance is tested in terms of score, number of iterations (NI), Execution time and (TM) under different Gaussian noises on OASIS-MRI dataset. The results after investigation, the proposed method shows a significant improvement as compared to other existing methods in terms of Score, NI and TM under different Gaussian noises on OASIS-MRI dataset.\",\"PeriodicalId\":149965,\"journal\":{\"name\":\"2014 International Conference on Communication and Signal Processing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Communication and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP.2014.6950134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Communication and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2014.6950134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于均值和峰谷滤波去噪与基于高斯核的模糊c均值(MPVKFCM)算法相结合的医学图像分割新算法。首先,采用均值滤波和峰谷滤波算法对图像进行去噪。其次,对去噪后的图像进行基于高斯核的模糊c均值分割算法;在OASIS-MRI图像数据集上测试了该算法的性能。在OASIS-MRI数据集上,对不同高斯噪声下的得分、迭代次数(NI)、执行时间(Execution time)和TM进行性能测试。研究结果表明,该方法在不同高斯噪声下的Score、NI和TM均比现有方法有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance and evalution of Guassian kernals for FCM algorithm with mean filtering based denoising for MRI segmentation
In this paper, a new segmentation algorithm with the integration of mean and peak-and-valley filtering based denoising and Gaussian kernels based fuzzy c-means (MPVKFCM) algorithm is proposed for medical image segmentation. First, the image is denoised by using the mean and peak-and-valley filtering algorithm. Secondly, image segmentation algorithm with Gaussian kernels based fuzzy c-means is performed on the denoised image. The performance of the proposed algorithm is tested on OASIS-MRI image dataset. The performance is tested in terms of score, number of iterations (NI), Execution time and (TM) under different Gaussian noises on OASIS-MRI dataset. The results after investigation, the proposed method shows a significant improvement as compared to other existing methods in terms of Score, NI and TM under different Gaussian noises on OASIS-MRI dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信