F. Prados, A. Bardera, M. Sbert, I. Boada, M. Feixas
{"title":"一种基于蒙特卡罗的扩散张量MRI光纤跟踪算法","authors":"F. Prados, A. Bardera, M. Sbert, I. Boada, M. Feixas","doi":"10.1109/CBMS.2006.20","DOIUrl":null,"url":null,"abstract":"Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach","PeriodicalId":208693,"journal":{"name":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Monte Carlo-Based Fiber Tracking Algorithm using Diffusion Tensor MRI\",\"authors\":\"F. Prados, A. Bardera, M. Sbert, I. Boada, M. Feixas\",\"doi\":\"10.1109/CBMS.2006.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach\",\"PeriodicalId\":208693,\"journal\":{\"name\":\"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2006.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2006.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Monte Carlo-Based Fiber Tracking Algorithm using Diffusion Tensor MRI
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach