利用人工智能优化股票组合的智能选择

M. Elhachloufi, Z. Guennoun, F. Hamza
{"title":"利用人工智能优化股票组合的智能选择","authors":"M. Elhachloufi, Z. Guennoun, F. Hamza","doi":"10.1109/INTECH.2012.6457769","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach for optimal portfolio choice. This approach is divided into two parts: The first part is to select from an initial portfolio, the relevants shares that have a positive influence on the return and risk portfolio using regression neural networks, i.e: The shares have a low risks and high returns. These shares will built a sub portfolio. In the second part, we seek the proportions that optimize these sub the portfolio whose risk used is semi-variance using genetic algorithms. This approach allows to achieve a financial gain in terms of cost reduction and tax. In addition, a reduction in computational load during the optimization phase.","PeriodicalId":369113,"journal":{"name":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of smart choice of shares portfolio using artificial intelligence\",\"authors\":\"M. Elhachloufi, Z. Guennoun, F. Hamza\",\"doi\":\"10.1109/INTECH.2012.6457769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an approach for optimal portfolio choice. This approach is divided into two parts: The first part is to select from an initial portfolio, the relevants shares that have a positive influence on the return and risk portfolio using regression neural networks, i.e: The shares have a low risks and high returns. These shares will built a sub portfolio. In the second part, we seek the proportions that optimize these sub the portfolio whose risk used is semi-variance using genetic algorithms. This approach allows to achieve a financial gain in terms of cost reduction and tax. In addition, a reduction in computational load during the optimization phase.\",\"PeriodicalId\":369113,\"journal\":{\"name\":\"Second International Conference on the Innovative Computing Technology (INTECH 2012)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second International Conference on the Innovative Computing Technology (INTECH 2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTECH.2012.6457769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTECH.2012.6457769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种最优投资组合选择方法。该方法分为两部分:第一部分是利用回归神经网络从初始投资组合中选择对收益有积极影响的相关股票和风险投资组合,即风险低收益高的股票。这些股票将构成次级投资组合。在第二部分中,我们利用遗传算法在风险为半方差的投资组合中寻求优化这些投资组合的比例。这种方法可以在降低成本和税收方面实现经济收益。此外,在优化阶段减少了计算负荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of smart choice of shares portfolio using artificial intelligence
In this paper, we present an approach for optimal portfolio choice. This approach is divided into two parts: The first part is to select from an initial portfolio, the relevants shares that have a positive influence on the return and risk portfolio using regression neural networks, i.e: The shares have a low risks and high returns. These shares will built a sub portfolio. In the second part, we seek the proportions that optimize these sub the portfolio whose risk used is semi-variance using genetic algorithms. This approach allows to achieve a financial gain in terms of cost reduction and tax. In addition, a reduction in computational load during the optimization phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信