Ashima Suvarna, K. Dey, Seema Nagar, Nishtha Madaan, S. Mehta
{"title":"处理电子商务产品规格中的性别偏见","authors":"Ashima Suvarna, K. Dey, Seema Nagar, Nishtha Madaan, S. Mehta","doi":"10.1109/GHCI47972.2019.9071916","DOIUrl":null,"url":null,"abstract":"Fair computing has emerged as a key area of artificial intelligence (AI), and especially machine learning (ML). Identification and mitigation of several types of biases, spanning over data and machine learning models, has attracted both research and regulatory attention. In this work, we explore the presence and degree of gender bias in product descriptions featured on e-commerce websites. Using the knowledge obtained in analysis, we recommend methods to debias the product description, using a product feature level text selection scheme, sourced by customer reviews. Our work is the first of its kind, that establishes a baseline for enhancing the cross-gender acceptability of product descriptions, and proposes a framework for e-retailers to provide such gender-neutral product descriptions.","PeriodicalId":153240,"journal":{"name":"2019 Grace Hopper Celebration India (GHCI)","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Handling Gender Biases in E-Commerce Product Specifications\",\"authors\":\"Ashima Suvarna, K. Dey, Seema Nagar, Nishtha Madaan, S. Mehta\",\"doi\":\"10.1109/GHCI47972.2019.9071916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fair computing has emerged as a key area of artificial intelligence (AI), and especially machine learning (ML). Identification and mitigation of several types of biases, spanning over data and machine learning models, has attracted both research and regulatory attention. In this work, we explore the presence and degree of gender bias in product descriptions featured on e-commerce websites. Using the knowledge obtained in analysis, we recommend methods to debias the product description, using a product feature level text selection scheme, sourced by customer reviews. Our work is the first of its kind, that establishes a baseline for enhancing the cross-gender acceptability of product descriptions, and proposes a framework for e-retailers to provide such gender-neutral product descriptions.\",\"PeriodicalId\":153240,\"journal\":{\"name\":\"2019 Grace Hopper Celebration India (GHCI)\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Grace Hopper Celebration India (GHCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GHCI47972.2019.9071916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Grace Hopper Celebration India (GHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GHCI47972.2019.9071916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Handling Gender Biases in E-Commerce Product Specifications
Fair computing has emerged as a key area of artificial intelligence (AI), and especially machine learning (ML). Identification and mitigation of several types of biases, spanning over data and machine learning models, has attracted both research and regulatory attention. In this work, we explore the presence and degree of gender bias in product descriptions featured on e-commerce websites. Using the knowledge obtained in analysis, we recommend methods to debias the product description, using a product feature level text selection scheme, sourced by customer reviews. Our work is the first of its kind, that establishes a baseline for enhancing the cross-gender acceptability of product descriptions, and proposes a framework for e-retailers to provide such gender-neutral product descriptions.