处理电子商务产品规格中的性别偏见

Ashima Suvarna, K. Dey, Seema Nagar, Nishtha Madaan, S. Mehta
{"title":"处理电子商务产品规格中的性别偏见","authors":"Ashima Suvarna, K. Dey, Seema Nagar, Nishtha Madaan, S. Mehta","doi":"10.1109/GHCI47972.2019.9071916","DOIUrl":null,"url":null,"abstract":"Fair computing has emerged as a key area of artificial intelligence (AI), and especially machine learning (ML). Identification and mitigation of several types of biases, spanning over data and machine learning models, has attracted both research and regulatory attention. In this work, we explore the presence and degree of gender bias in product descriptions featured on e-commerce websites. Using the knowledge obtained in analysis, we recommend methods to debias the product description, using a product feature level text selection scheme, sourced by customer reviews. Our work is the first of its kind, that establishes a baseline for enhancing the cross-gender acceptability of product descriptions, and proposes a framework for e-retailers to provide such gender-neutral product descriptions.","PeriodicalId":153240,"journal":{"name":"2019 Grace Hopper Celebration India (GHCI)","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Handling Gender Biases in E-Commerce Product Specifications\",\"authors\":\"Ashima Suvarna, K. Dey, Seema Nagar, Nishtha Madaan, S. Mehta\",\"doi\":\"10.1109/GHCI47972.2019.9071916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fair computing has emerged as a key area of artificial intelligence (AI), and especially machine learning (ML). Identification and mitigation of several types of biases, spanning over data and machine learning models, has attracted both research and regulatory attention. In this work, we explore the presence and degree of gender bias in product descriptions featured on e-commerce websites. Using the knowledge obtained in analysis, we recommend methods to debias the product description, using a product feature level text selection scheme, sourced by customer reviews. Our work is the first of its kind, that establishes a baseline for enhancing the cross-gender acceptability of product descriptions, and proposes a framework for e-retailers to provide such gender-neutral product descriptions.\",\"PeriodicalId\":153240,\"journal\":{\"name\":\"2019 Grace Hopper Celebration India (GHCI)\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Grace Hopper Celebration India (GHCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GHCI47972.2019.9071916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Grace Hopper Celebration India (GHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GHCI47972.2019.9071916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

公平计算已经成为人工智能(AI),尤其是机器学习(ML)的一个关键领域。识别和缓解跨越数据和机器学习模型的几种类型的偏见,已经引起了研究和监管部门的关注。在这项工作中,我们探讨了电子商务网站特色产品描述中的性别偏见的存在和程度。利用在分析中获得的知识,我们推荐使用产品特征级文本选择方案来消除产品描述的方法,该方案来自客户评论。我们的研究首次为提高产品描述的跨性别可接受性建立了基准,并为电子零售商提供性别中立的产品描述提出了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handling Gender Biases in E-Commerce Product Specifications
Fair computing has emerged as a key area of artificial intelligence (AI), and especially machine learning (ML). Identification and mitigation of several types of biases, spanning over data and machine learning models, has attracted both research and regulatory attention. In this work, we explore the presence and degree of gender bias in product descriptions featured on e-commerce websites. Using the knowledge obtained in analysis, we recommend methods to debias the product description, using a product feature level text selection scheme, sourced by customer reviews. Our work is the first of its kind, that establishes a baseline for enhancing the cross-gender acceptability of product descriptions, and proposes a framework for e-retailers to provide such gender-neutral product descriptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信