{"title":"从基因表达数据推断基因调控网络的神经遗传学方法","authors":"Guo Mao, Zhengbin Pang, Jie Liu, K. Zuo","doi":"10.1145/3569192.3569193","DOIUrl":null,"url":null,"abstract":"Accurate prediction of gene regulation rules is important for understanding complex life processes. Existing computational algorithms designed for bulk transcriptome datasets typically require a large number of time points to infer gene regulatory networks (GRNs), are suitable for a small number of genes, and cannot efficiently detect potential regulatory relationships. We propose an approach based on a deep learning framework to reconstruct GRNs from bulk transcriptome datasets, assuming that the expression levels of transcription factors involved in gene regulation are strong predictors of the expression of their target genes. The algorithm uses multilayer perceptrons to infer the regulatory relationship between multiple transcription factors and a gene, and uses genetic algorithms to search for the best regulatory gene combination. The results show that our approach is more accurate than other methods for reconstructing gene regulatory networks on real-world and simulated bulk transcriptome gene expression datasets.","PeriodicalId":249004,"journal":{"name":"Proceedings of the 9th International Conference on Bioinformatics Research and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neuro-genetic approach for inferring gene regulatory networks from gene expression data\",\"authors\":\"Guo Mao, Zhengbin Pang, Jie Liu, K. Zuo\",\"doi\":\"10.1145/3569192.3569193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of gene regulation rules is important for understanding complex life processes. Existing computational algorithms designed for bulk transcriptome datasets typically require a large number of time points to infer gene regulatory networks (GRNs), are suitable for a small number of genes, and cannot efficiently detect potential regulatory relationships. We propose an approach based on a deep learning framework to reconstruct GRNs from bulk transcriptome datasets, assuming that the expression levels of transcription factors involved in gene regulation are strong predictors of the expression of their target genes. The algorithm uses multilayer perceptrons to infer the regulatory relationship between multiple transcription factors and a gene, and uses genetic algorithms to search for the best regulatory gene combination. The results show that our approach is more accurate than other methods for reconstructing gene regulatory networks on real-world and simulated bulk transcriptome gene expression datasets.\",\"PeriodicalId\":249004,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Bioinformatics Research and Applications\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Bioinformatics Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569192.3569193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569192.3569193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A neuro-genetic approach for inferring gene regulatory networks from gene expression data
Accurate prediction of gene regulation rules is important for understanding complex life processes. Existing computational algorithms designed for bulk transcriptome datasets typically require a large number of time points to infer gene regulatory networks (GRNs), are suitable for a small number of genes, and cannot efficiently detect potential regulatory relationships. We propose an approach based on a deep learning framework to reconstruct GRNs from bulk transcriptome datasets, assuming that the expression levels of transcription factors involved in gene regulation are strong predictors of the expression of their target genes. The algorithm uses multilayer perceptrons to infer the regulatory relationship between multiple transcription factors and a gene, and uses genetic algorithms to search for the best regulatory gene combination. The results show that our approach is more accurate than other methods for reconstructing gene regulatory networks on real-world and simulated bulk transcriptome gene expression datasets.