情感分析中的深度学习方法综述

Enas A. M. Khalil, Enas M. F. El Houby, H. K. Mohamed
{"title":"情感分析中的深度学习方法综述","authors":"Enas A. M. Khalil, Enas M. F. El Houby, H. K. Mohamed","doi":"10.1109/ICCES51560.2020.9334625","DOIUrl":null,"url":null,"abstract":"Sentiment Analysis (SA) is the field that combines Natural Language Processing (NLP), Computational Linguistics (CL) and text analysis to study people’s opinions through, by extracting and analyzing subjective information from different resources as the Web, social media and similar sources and so help in drawing public’s sentiments or attitude toward certain people, products or ideas and extracting the contextual polarity of the information. This review focuses on recent work in SA using Deep Learning (DL)techniques in the sentiment classification process, it is based on the articles published through ScienceDirect and Springer databases in the interval from 2016 to 2020.It sheds the light on different DL algorithms used, different applications of SA systems. 58 articles studied in ScienceDirect While 26 articles in Springer satisfying the same criteria with the total of 84 articles studied and analyzed in this review. The review concerns with DL techniques, language, domain, and performance results.","PeriodicalId":247183,"journal":{"name":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Learning Approach in Sentiment Analysis: A Review\",\"authors\":\"Enas A. M. Khalil, Enas M. F. El Houby, H. K. Mohamed\",\"doi\":\"10.1109/ICCES51560.2020.9334625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment Analysis (SA) is the field that combines Natural Language Processing (NLP), Computational Linguistics (CL) and text analysis to study people’s opinions through, by extracting and analyzing subjective information from different resources as the Web, social media and similar sources and so help in drawing public’s sentiments or attitude toward certain people, products or ideas and extracting the contextual polarity of the information. This review focuses on recent work in SA using Deep Learning (DL)techniques in the sentiment classification process, it is based on the articles published through ScienceDirect and Springer databases in the interval from 2016 to 2020.It sheds the light on different DL algorithms used, different applications of SA systems. 58 articles studied in ScienceDirect While 26 articles in Springer satisfying the same criteria with the total of 84 articles studied and analyzed in this review. The review concerns with DL techniques, language, domain, and performance results.\",\"PeriodicalId\":247183,\"journal\":{\"name\":\"2020 15th International Conference on Computer Engineering and Systems (ICCES)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Conference on Computer Engineering and Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES51560.2020.9334625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES51560.2020.9334625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

情感分析(Sentiment Analysis, SA)是将自然语言处理(NLP)、计算语言学(Computational Linguistics, CL)和文本分析相结合的领域,通过从网络、社交媒体和类似的资源中提取和分析主观信息,研究人们的观点,从而有助于绘制公众对某些人、产品或想法的情绪或态度,并提取信息的语境极性。本文基于2016年至2020年期间在ScienceDirect和Springer数据库上发表的文章,重点介绍了深度学习(DL)技术在情感分类过程中的最新工作。它揭示了不同的深度学习算法,不同的应用程序的SA系统。在ScienceDirect中研究了58篇文章,而在Springer中有26篇文章符合相同的标准,本综述共研究和分析了84篇文章。回顾涉及DL技术、语言、领域和性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Approach in Sentiment Analysis: A Review
Sentiment Analysis (SA) is the field that combines Natural Language Processing (NLP), Computational Linguistics (CL) and text analysis to study people’s opinions through, by extracting and analyzing subjective information from different resources as the Web, social media and similar sources and so help in drawing public’s sentiments or attitude toward certain people, products or ideas and extracting the contextual polarity of the information. This review focuses on recent work in SA using Deep Learning (DL)techniques in the sentiment classification process, it is based on the articles published through ScienceDirect and Springer databases in the interval from 2016 to 2020.It sheds the light on different DL algorithms used, different applications of SA systems. 58 articles studied in ScienceDirect While 26 articles in Springer satisfying the same criteria with the total of 84 articles studied and analyzed in this review. The review concerns with DL techniques, language, domain, and performance results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信