{"title":"拉格朗日-狄拉克系统中狄拉克结构的互连和组成","authors":"H. Jacobs, Hiroaki Yoshimura","doi":"10.1109/CDC.2011.6160480","DOIUrl":null,"url":null,"abstract":"There is much known on the port-Hamiltonian theory of interconnection of Dirac structures through shared variables. This interconnection is known as Composition of Dirac structures. In this paper, we will show an alternative interconnection of Dirac structures called Bowtie interconnection in the context of Lagrange-Dirac dynamical systems. In particular, we try to illustrate the following two things: Firstly, how composition of Dirac structures may be used in the Lagrangian theory of LC-circuits. Secondly, how composition of Dirac structures may be linked with bowtie interconnection.","PeriodicalId":360068,"journal":{"name":"IEEE Conference on Decision and Control and European Control Conference","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interconnection and composition of Dirac structures for Lagrange-Dirac systems\",\"authors\":\"H. Jacobs, Hiroaki Yoshimura\",\"doi\":\"10.1109/CDC.2011.6160480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is much known on the port-Hamiltonian theory of interconnection of Dirac structures through shared variables. This interconnection is known as Composition of Dirac structures. In this paper, we will show an alternative interconnection of Dirac structures called Bowtie interconnection in the context of Lagrange-Dirac dynamical systems. In particular, we try to illustrate the following two things: Firstly, how composition of Dirac structures may be used in the Lagrangian theory of LC-circuits. Secondly, how composition of Dirac structures may be linked with bowtie interconnection.\",\"PeriodicalId\":360068,\"journal\":{\"name\":\"IEEE Conference on Decision and Control and European Control Conference\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Decision and Control and European Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2011.6160480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control and European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2011.6160480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interconnection and composition of Dirac structures for Lagrange-Dirac systems
There is much known on the port-Hamiltonian theory of interconnection of Dirac structures through shared variables. This interconnection is known as Composition of Dirac structures. In this paper, we will show an alternative interconnection of Dirac structures called Bowtie interconnection in the context of Lagrange-Dirac dynamical systems. In particular, we try to illustrate the following two things: Firstly, how composition of Dirac structures may be used in the Lagrangian theory of LC-circuits. Secondly, how composition of Dirac structures may be linked with bowtie interconnection.