肥厚性心肌病患者心律失常猝死生存预测模型:可解释的机器学习分析

N. Farahani, Moein Enayati, Andredi Pumarejo, Mateo Alzate Aguirre, Christopher G. Scott, Konstantinos C. Siontis, Martijn Bos, J. Geske, M. Ackerman, Adelaide M. Arruda-Olson
{"title":"肥厚性心肌病患者心律失常猝死生存预测模型:可解释的机器学习分析","authors":"N. Farahani, Moein Enayati, Andredi Pumarejo, Mateo Alzate Aguirre, Christopher G. Scott, Konstantinos C. Siontis, Martijn Bos, J. Geske, M. Ackerman, Adelaide M. Arruda-Olson","doi":"10.1115/dmd2023-2989","DOIUrl":null,"url":null,"abstract":"\n Hypertrophic Cardiomyopathy (HCM) is an inheritable heart disease with the highest rate of sudden cardiac death (SCD) in young adults. Implantable Cardioverter Defibrillator (ICD) therapy is recommended for HCM patients at high risk for SCD. Reviewing the recent clinical literature revealed the potential to improve the selection of candidates for ICD implantation. The current study uses information extracted from echocardiography reports to evaluate HCM patients with ICD and aims to provide a comparative insight into patients who benefited the most from the device therapy, including shock and anti-tachycardia pacing (ATP). The proposed interpretable machine learning approach has used the XGboost algorithm. The model’s performance was considered satisfactory, as evidenced by an accuracy score of 81% and an area under the receiver operating characteristic curve (AUC) value of 69% and SHapley Additive exPlanations (SHAP) identified common properties of HCM patients in each category and provided high-level reasoning and foundation for a clinical decision support tool.","PeriodicalId":325836,"journal":{"name":"2023 Design of Medical Devices Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARRHYTHMIC SUDDEN DEATH SURVIVAL PREDICTION MODEL FOR HYPERTROPHIC CARDIOMYOPATHY PATIENTS: AN INTERPRETABLE MACHINE LEARNING ANALYSIS\",\"authors\":\"N. Farahani, Moein Enayati, Andredi Pumarejo, Mateo Alzate Aguirre, Christopher G. Scott, Konstantinos C. Siontis, Martijn Bos, J. Geske, M. Ackerman, Adelaide M. Arruda-Olson\",\"doi\":\"10.1115/dmd2023-2989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hypertrophic Cardiomyopathy (HCM) is an inheritable heart disease with the highest rate of sudden cardiac death (SCD) in young adults. Implantable Cardioverter Defibrillator (ICD) therapy is recommended for HCM patients at high risk for SCD. Reviewing the recent clinical literature revealed the potential to improve the selection of candidates for ICD implantation. The current study uses information extracted from echocardiography reports to evaluate HCM patients with ICD and aims to provide a comparative insight into patients who benefited the most from the device therapy, including shock and anti-tachycardia pacing (ATP). The proposed interpretable machine learning approach has used the XGboost algorithm. The model’s performance was considered satisfactory, as evidenced by an accuracy score of 81% and an area under the receiver operating characteristic curve (AUC) value of 69% and SHapley Additive exPlanations (SHAP) identified common properties of HCM patients in each category and provided high-level reasoning and foundation for a clinical decision support tool.\",\"PeriodicalId\":325836,\"journal\":{\"name\":\"2023 Design of Medical Devices Conference\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Design of Medical Devices Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dmd2023-2989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design of Medical Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dmd2023-2989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肥厚性心肌病(HCM)是一种遗传性心脏病,在年轻人中心脏性猝死(SCD)的发生率最高。植入式心律转复除颤器(ICD)治疗推荐HCM患者在SCD的高风险。回顾最近的临床文献揭示了改善ICD植入候选人选择的潜力。目前的研究使用超声心动图报告中提取的信息来评估HCM合并ICD患者,旨在提供从器械治疗(包括休克和抗心动过速起搏(ATP))中获益最多的患者的比较见解。提出的可解释机器学习方法使用了XGboost算法。模型的准确性评分为81%,受试者工作特征曲线下面积(AUC)值为69%,SHapley加性解释(SHAP)识别了HCM患者在每个类别中的共同特征,为临床决策支持工具提供了高级推理和基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ARRHYTHMIC SUDDEN DEATH SURVIVAL PREDICTION MODEL FOR HYPERTROPHIC CARDIOMYOPATHY PATIENTS: AN INTERPRETABLE MACHINE LEARNING ANALYSIS
Hypertrophic Cardiomyopathy (HCM) is an inheritable heart disease with the highest rate of sudden cardiac death (SCD) in young adults. Implantable Cardioverter Defibrillator (ICD) therapy is recommended for HCM patients at high risk for SCD. Reviewing the recent clinical literature revealed the potential to improve the selection of candidates for ICD implantation. The current study uses information extracted from echocardiography reports to evaluate HCM patients with ICD and aims to provide a comparative insight into patients who benefited the most from the device therapy, including shock and anti-tachycardia pacing (ATP). The proposed interpretable machine learning approach has used the XGboost algorithm. The model’s performance was considered satisfactory, as evidenced by an accuracy score of 81% and an area under the receiver operating characteristic curve (AUC) value of 69% and SHapley Additive exPlanations (SHAP) identified common properties of HCM patients in each category and provided high-level reasoning and foundation for a clinical decision support tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信