自动集群的网格节点

Qiang Xu, J. Subhlok
{"title":"自动集群的网格节点","authors":"Qiang Xu, J. Subhlok","doi":"10.1109/GRID.2005.1542746","DOIUrl":null,"url":null,"abstract":"In a grid-computing environment, resource selection and scheduling depend on the network topology connecting the computation nodes. This paper presents a method to hierarchically group compute nodes distributed across the Internet into logical clusters, and determine the relative location of the clusters. At inter-domain level, distance from landmarks (a small group of distributed reference nodes) is the basis for converting the location of nodes inside a complex network structure onto a simple geometric space. The position of compute nodes in this geometric space is the basis for partitioning nodes into clusters. For compute nodes within an administrative domain, minimum RTT is used as the metric to partition nodes into clusters. This approach leads to an efficient, scalable and portable method of clustering grid nodes and building a distance map among clusters. We demonstrate the system for automatic clustering by applying it to computation nodes distributed across five universities in Texas.","PeriodicalId":347929,"journal":{"name":"The 6th IEEE/ACM International Workshop on Grid Computing, 2005.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Automatic clustering of grid nodes\",\"authors\":\"Qiang Xu, J. Subhlok\",\"doi\":\"10.1109/GRID.2005.1542746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a grid-computing environment, resource selection and scheduling depend on the network topology connecting the computation nodes. This paper presents a method to hierarchically group compute nodes distributed across the Internet into logical clusters, and determine the relative location of the clusters. At inter-domain level, distance from landmarks (a small group of distributed reference nodes) is the basis for converting the location of nodes inside a complex network structure onto a simple geometric space. The position of compute nodes in this geometric space is the basis for partitioning nodes into clusters. For compute nodes within an administrative domain, minimum RTT is used as the metric to partition nodes into clusters. This approach leads to an efficient, scalable and portable method of clustering grid nodes and building a distance map among clusters. We demonstrate the system for automatic clustering by applying it to computation nodes distributed across five universities in Texas.\",\"PeriodicalId\":347929,\"journal\":{\"name\":\"The 6th IEEE/ACM International Workshop on Grid Computing, 2005.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 6th IEEE/ACM International Workshop on Grid Computing, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRID.2005.1542746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 6th IEEE/ACM International Workshop on Grid Computing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRID.2005.1542746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在网格计算环境中,资源的选择和调度取决于连接计算节点的网络拓扑结构。本文提出了一种将分布在互联网上的计算节点分层分组成逻辑集群的方法,并确定集群的相对位置。在域间层面,与地标(一组分布式参考节点)的距离是将复杂网络结构内节点的位置转换为简单几何空间的基础。计算节点在该几何空间中的位置是将节点划分为集群的基础。对于管理域中的计算节点,使用最小RTT作为将节点划分为集群的度量。这种方法提供了一种高效、可扩展和可移植的网格节点聚类方法,并在集群之间构建距离图。我们通过将其应用于分布在德克萨斯州五所大学的计算节点来演示自动集群系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic clustering of grid nodes
In a grid-computing environment, resource selection and scheduling depend on the network topology connecting the computation nodes. This paper presents a method to hierarchically group compute nodes distributed across the Internet into logical clusters, and determine the relative location of the clusters. At inter-domain level, distance from landmarks (a small group of distributed reference nodes) is the basis for converting the location of nodes inside a complex network structure onto a simple geometric space. The position of compute nodes in this geometric space is the basis for partitioning nodes into clusters. For compute nodes within an administrative domain, minimum RTT is used as the metric to partition nodes into clusters. This approach leads to an efficient, scalable and portable method of clustering grid nodes and building a distance map among clusters. We demonstrate the system for automatic clustering by applying it to computation nodes distributed across five universities in Texas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信