将临床笔记映射到医疗术语

Yefeng Wang, J. Patrick
{"title":"将临床笔记映射到医疗术语","authors":"Yefeng Wang, J. Patrick","doi":"10.3115/1572306.1572330","DOIUrl":null,"url":null,"abstract":"Clinicians write the reports in natural language which contains a large amount of informal medical term. Automating conversion of text into clinical terminologies allows reliable retrieval and analysis of the clinical notes. We have created an algorithm that maps medical expressions in clinical notes into a medical terminology. This algorithm indexes medical terms into an augmented lexicon. It performs lexical searches in text and finds the longest possible matches in the target terminology, SNOMED CT. The mapping system was run on a collection of 470,000 clinical notes from an Intensive Care Service (ICS). The evaluation on a small part of the copus shows the precision is 70.4%.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Mapping Clinical Notes to Medical Terminologies at Point of Care\",\"authors\":\"Yefeng Wang, J. Patrick\",\"doi\":\"10.3115/1572306.1572330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clinicians write the reports in natural language which contains a large amount of informal medical term. Automating conversion of text into clinical terminologies allows reliable retrieval and analysis of the clinical notes. We have created an algorithm that maps medical expressions in clinical notes into a medical terminology. This algorithm indexes medical terms into an augmented lexicon. It performs lexical searches in text and finds the longest possible matches in the target terminology, SNOMED CT. The mapping system was run on a collection of 470,000 clinical notes from an Intensive Care Service (ICS). The evaluation on a small part of the copus shows the precision is 70.4%.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1572306.1572330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1572306.1572330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

临床医生用自然语言撰写报告,其中包含大量的非正式医学术语。将文本自动转换为临床术语,可以可靠地检索和分析临床笔记。我们创建了一个算法,将临床记录中的医学表达映射为医学术语。该算法将医学术语索引到扩充词典中。它在文本中执行词法搜索,并在目标术语(SNOMED CT)中找到最长的可能匹配项。该地图系统是在重症监护服务(ICS)的47万份临床记录的集合上运行的。对一小部分copus进行评价,精度为70.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping Clinical Notes to Medical Terminologies at Point of Care
Clinicians write the reports in natural language which contains a large amount of informal medical term. Automating conversion of text into clinical terminologies allows reliable retrieval and analysis of the clinical notes. We have created an algorithm that maps medical expressions in clinical notes into a medical terminology. This algorithm indexes medical terms into an augmented lexicon. It performs lexical searches in text and finds the longest possible matches in the target terminology, SNOMED CT. The mapping system was run on a collection of 470,000 clinical notes from an Intensive Care Service (ICS). The evaluation on a small part of the copus shows the precision is 70.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信