可验证性和可预测性:解释点云处理网络架构的实用程序

Wen Shen, Zhihua Wei, Shikun Huang, Binbin Zhang, Panyue Chen, Ping Zhao, Quanshi Zhang
{"title":"可验证性和可预测性:解释点云处理网络架构的实用程序","authors":"Wen Shen, Zhihua Wei, Shikun Huang, Binbin Zhang, Panyue Chen, Ping Zhao, Quanshi Zhang","doi":"10.1109/CVPR46437.2021.01056","DOIUrl":null,"url":null,"abstract":"In this paper, we diagnose deep neural networks for 3D point cloud processing to explore utilities of different intermediate-layer network architectures. We propose a number of hypotheses on the effects of specific intermediate-layer network architectures on the representation capacity of DNNs. In order to prove the hypotheses, we design five metrics to diagnose various types of DNNs from the following perspectives, information discarding, information concentration, rotation robustness, adversarial robustness, and neighborhood inconsistency. We conduct comparative studies based on such metrics to verify the hypotheses. We further use the verified hypotheses to revise intermediate-layer architectures of existing DNNs and improve their utilities. Experiments demonstrate the effectiveness of our method. The code will be released when this paper is accepted.","PeriodicalId":339646,"journal":{"name":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Verifiability and Predictability: Interpreting Utilities of Network Architectures for Point Cloud Processing\",\"authors\":\"Wen Shen, Zhihua Wei, Shikun Huang, Binbin Zhang, Panyue Chen, Ping Zhao, Quanshi Zhang\",\"doi\":\"10.1109/CVPR46437.2021.01056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we diagnose deep neural networks for 3D point cloud processing to explore utilities of different intermediate-layer network architectures. We propose a number of hypotheses on the effects of specific intermediate-layer network architectures on the representation capacity of DNNs. In order to prove the hypotheses, we design five metrics to diagnose various types of DNNs from the following perspectives, information discarding, information concentration, rotation robustness, adversarial robustness, and neighborhood inconsistency. We conduct comparative studies based on such metrics to verify the hypotheses. We further use the verified hypotheses to revise intermediate-layer architectures of existing DNNs and improve their utilities. Experiments demonstrate the effectiveness of our method. The code will be released when this paper is accepted.\",\"PeriodicalId\":339646,\"journal\":{\"name\":\"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR46437.2021.01056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR46437.2021.01056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们诊断了用于三维点云处理的深度神经网络,以探索不同中间层网络架构的效用。我们提出了一些关于特定中间层网络架构对深度神经网络表示能力的影响的假设。为了证明这些假设,我们设计了五个指标,从信息丢弃、信息集中、旋转鲁棒性、对抗鲁棒性和邻域不一致性等角度来诊断不同类型的深度神经网络。我们根据这些指标进行比较研究,以验证假设。我们进一步使用验证的假设来修改现有深度神经网络的中间层架构并提高其效用。实验证明了该方法的有效性。本文被录用后将发布代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verifiability and Predictability: Interpreting Utilities of Network Architectures for Point Cloud Processing
In this paper, we diagnose deep neural networks for 3D point cloud processing to explore utilities of different intermediate-layer network architectures. We propose a number of hypotheses on the effects of specific intermediate-layer network architectures on the representation capacity of DNNs. In order to prove the hypotheses, we design five metrics to diagnose various types of DNNs from the following perspectives, information discarding, information concentration, rotation robustness, adversarial robustness, and neighborhood inconsistency. We conduct comparative studies based on such metrics to verify the hypotheses. We further use the verified hypotheses to revise intermediate-layer architectures of existing DNNs and improve their utilities. Experiments demonstrate the effectiveness of our method. The code will be released when this paper is accepted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信