基于嵌入式单片机的机械异常检测

Mansoureh Lord, Adam Kaplan
{"title":"基于嵌入式单片机的机械异常检测","authors":"Mansoureh Lord, Adam Kaplan","doi":"10.1109/CSCI54926.2021.00159","DOIUrl":null,"url":null,"abstract":"This paper explores machine learning on an embedded device to detect anomalies with sophisticated low-power neural networks. We leverage this deep learning approach to detect mechanical anomalies as they occur on a top-load washing machine. We collect normal data from balanced laundry loads and abnormal data from unbalanced laundry loads, as they are being washed by the machine. The normal data is then used to train two different neural network models: autoencoder and variational autoencoder. This model is ported to an Arduino Nano microcontroller mounted to the washing machine. Using the autoencoder model, the microcontroller detects unbalanced washing machine loads with 92% accuracy, 90% precision and 99% recall. The battery life for this autoencoder model is 20 hours on 5 V lithium batteries, which is only 14.9% less than the life of a basic LED-blink application on the same platform.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mechanical Anomaly Detection on an Embedded Microcontroller\",\"authors\":\"Mansoureh Lord, Adam Kaplan\",\"doi\":\"10.1109/CSCI54926.2021.00159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores machine learning on an embedded device to detect anomalies with sophisticated low-power neural networks. We leverage this deep learning approach to detect mechanical anomalies as they occur on a top-load washing machine. We collect normal data from balanced laundry loads and abnormal data from unbalanced laundry loads, as they are being washed by the machine. The normal data is then used to train two different neural network models: autoencoder and variational autoencoder. This model is ported to an Arduino Nano microcontroller mounted to the washing machine. Using the autoencoder model, the microcontroller detects unbalanced washing machine loads with 92% accuracy, 90% precision and 99% recall. The battery life for this autoencoder model is 20 hours on 5 V lithium batteries, which is only 14.9% less than the life of a basic LED-blink application on the same platform.\",\"PeriodicalId\":206881,\"journal\":{\"name\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI54926.2021.00159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文探讨了在嵌入式设备上使用复杂的低功耗神经网络来检测异常的机器学习。我们利用这种深度学习方法来检测高负荷洗衣机上发生的机械异常。我们从平衡的洗衣负荷中收集正常数据,从不平衡的洗衣负荷中收集异常数据,因为它们正在被机器洗涤。然后使用正常数据来训练两种不同的神经网络模型:自编码器和变分自编码器。这个模型被移植到安装在洗衣机上的Arduino Nano微控制器上。采用自编码器模型,单片机检测洗衣机负载不平衡,准确率92%,精度90%,召回率99%。这种自动编码器型号的电池寿命为5 V锂电池20小时,仅比相同平台上基本led闪烁应用的寿命少14.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical Anomaly Detection on an Embedded Microcontroller
This paper explores machine learning on an embedded device to detect anomalies with sophisticated low-power neural networks. We leverage this deep learning approach to detect mechanical anomalies as they occur on a top-load washing machine. We collect normal data from balanced laundry loads and abnormal data from unbalanced laundry loads, as they are being washed by the machine. The normal data is then used to train two different neural network models: autoencoder and variational autoencoder. This model is ported to an Arduino Nano microcontroller mounted to the washing machine. Using the autoencoder model, the microcontroller detects unbalanced washing machine loads with 92% accuracy, 90% precision and 99% recall. The battery life for this autoencoder model is 20 hours on 5 V lithium batteries, which is only 14.9% less than the life of a basic LED-blink application on the same platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信