Giovanni Mariani, G. Palermo, V. Zaccaria, C. Silvano
{"title":"多核的设计空间探索和运行时资源管理","authors":"Giovanni Mariani, G. Palermo, V. Zaccaria, C. Silvano","doi":"10.1145/2514641.2514647","DOIUrl":null,"url":null,"abstract":"Application-specific multicore architectures are usually designed by using a configurable platform in which a set of parameters can be tuned to find the best trade-off in terms of the selected figures of merit (such as energy, delay, and area). This multi-objective optimization phase is called Design-Space Exploration (DSE). Among the design-time (hardware) configurable parameters we can find the memory subsystem configuration (such as cache size and associativity) and other architectural parameters such as the instruction-level parallelism of the system processors. Among the runtime (software) configurable parameters we can find the degree of task-level parallelism associated with each application running on the platform.\n The contribution of this article is twofold; first, we introduce an evolutionary (NSGA-II-based) methodology for identifying a hardware configuration which is robust with respect to applications and corresponding datasets. Second, we introduce a novel runtime heuristic that exploits design-time identified operating points to provide guaranteed throughput to each application. Experimental results show that the design-time/runtime combined approach improves the runtime performance of the system with respect to existing reference techniques, while meeting the overall power budget.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Design-space exploration and runtime resource management for multicores\",\"authors\":\"Giovanni Mariani, G. Palermo, V. Zaccaria, C. Silvano\",\"doi\":\"10.1145/2514641.2514647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application-specific multicore architectures are usually designed by using a configurable platform in which a set of parameters can be tuned to find the best trade-off in terms of the selected figures of merit (such as energy, delay, and area). This multi-objective optimization phase is called Design-Space Exploration (DSE). Among the design-time (hardware) configurable parameters we can find the memory subsystem configuration (such as cache size and associativity) and other architectural parameters such as the instruction-level parallelism of the system processors. Among the runtime (software) configurable parameters we can find the degree of task-level parallelism associated with each application running on the platform.\\n The contribution of this article is twofold; first, we introduce an evolutionary (NSGA-II-based) methodology for identifying a hardware configuration which is robust with respect to applications and corresponding datasets. Second, we introduce a novel runtime heuristic that exploits design-time identified operating points to provide guaranteed throughput to each application. Experimental results show that the design-time/runtime combined approach improves the runtime performance of the system with respect to existing reference techniques, while meeting the overall power budget.\",\"PeriodicalId\":183677,\"journal\":{\"name\":\"ACM Trans. Embed. Comput. Syst.\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Embed. Comput. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2514641.2514647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2514641.2514647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design-space exploration and runtime resource management for multicores
Application-specific multicore architectures are usually designed by using a configurable platform in which a set of parameters can be tuned to find the best trade-off in terms of the selected figures of merit (such as energy, delay, and area). This multi-objective optimization phase is called Design-Space Exploration (DSE). Among the design-time (hardware) configurable parameters we can find the memory subsystem configuration (such as cache size and associativity) and other architectural parameters such as the instruction-level parallelism of the system processors. Among the runtime (software) configurable parameters we can find the degree of task-level parallelism associated with each application running on the platform.
The contribution of this article is twofold; first, we introduce an evolutionary (NSGA-II-based) methodology for identifying a hardware configuration which is robust with respect to applications and corresponding datasets. Second, we introduce a novel runtime heuristic that exploits design-time identified operating points to provide guaranteed throughput to each application. Experimental results show that the design-time/runtime combined approach improves the runtime performance of the system with respect to existing reference techniques, while meeting the overall power budget.