鲁棒二阶多项式规划的收敛性及其应用

T. D. Chuong, Xinghuo Yu, Andrew Craig Eberhard, C. Li, Chen Liu
{"title":"鲁棒二阶多项式规划的收敛性及其应用","authors":"T. D. Chuong, Xinghuo Yu, Andrew Craig Eberhard, C. Li, Chen Liu","doi":"10.1080/10556788.2023.2189719","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a bilevel polynomial optimization problem, where the constraint functions of both the upper-level and lower-level problems involve uncertain parameters. We employ the deterministic robust optimization approach to examine the bilevel polynomial optimization problem under data uncertainties by providing lower bound approximations and convergences of sum-of-squares (SOS) relaxations for the robust bilevel polynomial optimization problem. More precisely, we show that under the convexity of the lower-level problem and either the boundedness of the feasible set or the coercivity of the objective function, the global optimal values of SOS relaxation problems are lower bounds of the global optimal value of the robust bilevel polynomial problem and they converge to this global optimal value when the degrees of SOS polynomials in the relaxation problems tend to infinity. Moreover, an application to an electric vehicle charging scheduling problem with renewable energy sources demonstrates that using the proposed SOS relaxation schemes, we obtain more stable optimal values than applying a direct solution approach as the SOS relaxations are capable of solving these models involving data uncertainties in dynamic charging price and weather conditions.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergences for robust bilevel polynomial programmes with applications\",\"authors\":\"T. D. Chuong, Xinghuo Yu, Andrew Craig Eberhard, C. Li, Chen Liu\",\"doi\":\"10.1080/10556788.2023.2189719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a bilevel polynomial optimization problem, where the constraint functions of both the upper-level and lower-level problems involve uncertain parameters. We employ the deterministic robust optimization approach to examine the bilevel polynomial optimization problem under data uncertainties by providing lower bound approximations and convergences of sum-of-squares (SOS) relaxations for the robust bilevel polynomial optimization problem. More precisely, we show that under the convexity of the lower-level problem and either the boundedness of the feasible set or the coercivity of the objective function, the global optimal values of SOS relaxation problems are lower bounds of the global optimal value of the robust bilevel polynomial problem and they converge to this global optimal value when the degrees of SOS polynomials in the relaxation problems tend to infinity. Moreover, an application to an electric vehicle charging scheduling problem with renewable energy sources demonstrates that using the proposed SOS relaxation schemes, we obtain more stable optimal values than applying a direct solution approach as the SOS relaxations are capable of solving these models involving data uncertainties in dynamic charging price and weather conditions.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2023.2189719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2023.2189719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一个二层多项式优化问题,其中上层和下层问题的约束函数都包含不确定参数。本文采用确定性稳健优化方法,通过给出稳健优化问题的平方和松弛的下界逼近和收敛性,研究了数据不确定条件下的双层多项式优化问题。更准确地说,我们证明了在低阶问题的凸性和可行集的有界性或目标函数的矫顽性下,SOS松弛问题的全局最优值是鲁棒二阶多项式问题全局最优值的下界,并且当松弛问题中的SOS多项式的阶数趋于无穷时,它们收敛于该全局最优值。此外,对可再生能源电动汽车充电调度问题的应用表明,使用所提出的SOS松弛方案比使用直接求解方法获得更稳定的最优值,因为SOS松弛方案能够解决这些涉及动态充电价格和天气条件下数据不确定性的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergences for robust bilevel polynomial programmes with applications
In this paper, we consider a bilevel polynomial optimization problem, where the constraint functions of both the upper-level and lower-level problems involve uncertain parameters. We employ the deterministic robust optimization approach to examine the bilevel polynomial optimization problem under data uncertainties by providing lower bound approximations and convergences of sum-of-squares (SOS) relaxations for the robust bilevel polynomial optimization problem. More precisely, we show that under the convexity of the lower-level problem and either the boundedness of the feasible set or the coercivity of the objective function, the global optimal values of SOS relaxation problems are lower bounds of the global optimal value of the robust bilevel polynomial problem and they converge to this global optimal value when the degrees of SOS polynomials in the relaxation problems tend to infinity. Moreover, an application to an electric vehicle charging scheduling problem with renewable energy sources demonstrates that using the proposed SOS relaxation schemes, we obtain more stable optimal values than applying a direct solution approach as the SOS relaxations are capable of solving these models involving data uncertainties in dynamic charging price and weather conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信