基于语义概念共现的视频分类

Shayan Modiri Assari, A. Zamir, M. Shah
{"title":"基于语义概念共现的视频分类","authors":"Shayan Modiri Assari, A. Zamir, M. Shah","doi":"10.1109/CVPR.2014.324","DOIUrl":null,"url":null,"abstract":"We address the problem of classifying complex videos based on their content. A typical approach to this problem is performing the classification using semantic attributes, commonly termed concepts, which occur in the video. In this paper, we propose a contextual approach to video classification based on Generalized Maximum Clique Problem (GMCP) which uses the co-occurrence of concepts as the context model. To be more specific, we propose to represent a class based on the co-occurrence of its concepts and classify a video based on matching its semantic co-occurrence pattern to each class representation. We perform the matching using GMCP which finds the strongest clique of co-occurring concepts in a video. We argue that, in principal, the co-occurrence of concepts yields a richer representation of a video compared to most of the current approaches. Additionally, we propose a novel optimal solution to GMCP based on Mixed Binary Integer Programming (MBIP). The evaluations show our approach, which opens new opportunities for further research in this direction, outperforms several well established video classification methods.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Video Classification Using Semantic Concept Co-occurrences\",\"authors\":\"Shayan Modiri Assari, A. Zamir, M. Shah\",\"doi\":\"10.1109/CVPR.2014.324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of classifying complex videos based on their content. A typical approach to this problem is performing the classification using semantic attributes, commonly termed concepts, which occur in the video. In this paper, we propose a contextual approach to video classification based on Generalized Maximum Clique Problem (GMCP) which uses the co-occurrence of concepts as the context model. To be more specific, we propose to represent a class based on the co-occurrence of its concepts and classify a video based on matching its semantic co-occurrence pattern to each class representation. We perform the matching using GMCP which finds the strongest clique of co-occurring concepts in a video. We argue that, in principal, the co-occurrence of concepts yields a richer representation of a video compared to most of the current approaches. Additionally, we propose a novel optimal solution to GMCP based on Mixed Binary Integer Programming (MBIP). The evaluations show our approach, which opens new opportunities for further research in this direction, outperforms several well established video classification methods.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

我们解决了基于内容对复杂视频进行分类的问题。此问题的典型方法是使用语义属性(通常称为概念)执行分类,这些属性出现在视频中。本文提出了一种基于广义最大团问题(GMCP)的视频分类上下文方法,该方法使用概念共现作为上下文模型。更具体地说,我们建议基于其概念的共现来表示一个类,并基于将其语义共现模式与每个类表示相匹配来对视频进行分类。我们使用GMCP进行匹配,GMCP找到视频中共同出现的概念的最强团。我们认为,原则上,与大多数当前方法相比,概念的共现产生了更丰富的视频表示。此外,我们还提出了一种基于混合二进制整数规划(MBIP)的GMCP最优解。评估表明,我们的方法优于几种成熟的视频分类方法,为这一方向的进一步研究开辟了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Classification Using Semantic Concept Co-occurrences
We address the problem of classifying complex videos based on their content. A typical approach to this problem is performing the classification using semantic attributes, commonly termed concepts, which occur in the video. In this paper, we propose a contextual approach to video classification based on Generalized Maximum Clique Problem (GMCP) which uses the co-occurrence of concepts as the context model. To be more specific, we propose to represent a class based on the co-occurrence of its concepts and classify a video based on matching its semantic co-occurrence pattern to each class representation. We perform the matching using GMCP which finds the strongest clique of co-occurring concepts in a video. We argue that, in principal, the co-occurrence of concepts yields a richer representation of a video compared to most of the current approaches. Additionally, we propose a novel optimal solution to GMCP based on Mixed Binary Integer Programming (MBIP). The evaluations show our approach, which opens new opportunities for further research in this direction, outperforms several well established video classification methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信