根据可读性和词汇多样性指标确定文本作者年龄的方法

A. A. Sobolev, A. Fedotova, A. Kurtukova, A. Romanov, A. Shelupanov
{"title":"根据可读性和词汇多样性指标确定文本作者年龄的方法","authors":"A. A. Sobolev, A. Fedotova, A. Kurtukova, A. Romanov, A. Shelupanov","doi":"10.21293/1818-0442-2022-25-2-45-52","DOIUrl":null,"url":null,"abstract":"The article describes the approaches to determining the age of the author of an anonymous text written in Russian. The fundamental works of the subject area are considered, both proven approaches (support vector machine, naive Bayes classifier, convolutional and recurrent neural networks) and modern methods (fastText, BERT) are implemented. The study used its own data set containing 1,5 million comments from social media users. A separate experiment is devoted to assessing the impact on the classification accuracy of various text vectorization methods. As a result of a series of experiments aimed at evaluating the efficiency of the methods used and selecting informative features, a model was obtained that can predict the age of the author of an anonymous text with an accuracy of 83.2%.","PeriodicalId":273068,"journal":{"name":"Proceedings of Tomsk State University of Control Systems and Radioelectronics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Methodology to determine the age of the text’s author based on readability and lexical diversity metrics\",\"authors\":\"A. A. Sobolev, A. Fedotova, A. Kurtukova, A. Romanov, A. Shelupanov\",\"doi\":\"10.21293/1818-0442-2022-25-2-45-52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article describes the approaches to determining the age of the author of an anonymous text written in Russian. The fundamental works of the subject area are considered, both proven approaches (support vector machine, naive Bayes classifier, convolutional and recurrent neural networks) and modern methods (fastText, BERT) are implemented. The study used its own data set containing 1,5 million comments from social media users. A separate experiment is devoted to assessing the impact on the classification accuracy of various text vectorization methods. As a result of a series of experiments aimed at evaluating the efficiency of the methods used and selecting informative features, a model was obtained that can predict the age of the author of an anonymous text with an accuracy of 83.2%.\",\"PeriodicalId\":273068,\"journal\":{\"name\":\"Proceedings of Tomsk State University of Control Systems and Radioelectronics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Tomsk State University of Control Systems and Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21293/1818-0442-2022-25-2-45-52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tomsk State University of Control Systems and Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21293/1818-0442-2022-25-2-45-52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这篇文章描述了确定用俄语写的匿名文本作者年龄的方法。考虑了主题领域的基础工作,实现了已证明的方法(支持向量机,朴素贝叶斯分类器,卷积和循环神经网络)和现代方法(fastText, BERT)。该研究使用了自己的数据集,其中包含来自社交媒体用户的150万条评论。一个单独的实验致力于评估各种文本矢量化方法对分类精度的影响。通过一系列旨在评估所使用方法的效率和选择信息特征的实验,获得了一个可以预测匿名文本作者年龄的模型,准确率为83.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methodology to determine the age of the text’s author based on readability and lexical diversity metrics
The article describes the approaches to determining the age of the author of an anonymous text written in Russian. The fundamental works of the subject area are considered, both proven approaches (support vector machine, naive Bayes classifier, convolutional and recurrent neural networks) and modern methods (fastText, BERT) are implemented. The study used its own data set containing 1,5 million comments from social media users. A separate experiment is devoted to assessing the impact on the classification accuracy of various text vectorization methods. As a result of a series of experiments aimed at evaluating the efficiency of the methods used and selecting informative features, a model was obtained that can predict the age of the author of an anonymous text with an accuracy of 83.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信