{"title":"基于生成对抗网络的遥感图像去模糊","authors":"Yungang Zhang, Yu Xiang, Lei Bai","doi":"10.1109/GEOINFORMATICS.2018.8557110","DOIUrl":null,"url":null,"abstract":"Deblurring is a classical problem for remote sensing images, which is known to be difficult as an ill-posed problem. A feasible solution for the problem is incorporating various priors into restoration procedure as constrained conditions. However, the learning of priors usually assumes that the blurs in an image are produced by fixed types of reasons, and thus a possible decrease in model's description ability. In this paper, an end-to-end learned method based on generative adversarial networks (GANs) is proposed to tackle the deblurring problem for remote sensing images. The proposed deblurring model does not need any prior assumptions for the blurs. The proposed method was evaluated on a satellite map image data set and state-of-the-art performance was obtained.","PeriodicalId":142380,"journal":{"name":"2018 26th International Conference on Geoinformatics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Generative Adversarial Network for Deblurring of Remote Sensing Image\",\"authors\":\"Yungang Zhang, Yu Xiang, Lei Bai\",\"doi\":\"10.1109/GEOINFORMATICS.2018.8557110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deblurring is a classical problem for remote sensing images, which is known to be difficult as an ill-posed problem. A feasible solution for the problem is incorporating various priors into restoration procedure as constrained conditions. However, the learning of priors usually assumes that the blurs in an image are produced by fixed types of reasons, and thus a possible decrease in model's description ability. In this paper, an end-to-end learned method based on generative adversarial networks (GANs) is proposed to tackle the deblurring problem for remote sensing images. The proposed deblurring model does not need any prior assumptions for the blurs. The proposed method was evaluated on a satellite map image data set and state-of-the-art performance was obtained.\",\"PeriodicalId\":142380,\"journal\":{\"name\":\"2018 26th International Conference on Geoinformatics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th International Conference on Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEOINFORMATICS.2018.8557110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEOINFORMATICS.2018.8557110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generative Adversarial Network for Deblurring of Remote Sensing Image
Deblurring is a classical problem for remote sensing images, which is known to be difficult as an ill-posed problem. A feasible solution for the problem is incorporating various priors into restoration procedure as constrained conditions. However, the learning of priors usually assumes that the blurs in an image are produced by fixed types of reasons, and thus a possible decrease in model's description ability. In this paper, an end-to-end learned method based on generative adversarial networks (GANs) is proposed to tackle the deblurring problem for remote sensing images. The proposed deblurring model does not need any prior assumptions for the blurs. The proposed method was evaluated on a satellite map image data set and state-of-the-art performance was obtained.