在Graphcore ipu上实现时空图卷积网络

Johannes Moe, Konstantin Pogorelov, Daniel Thilo Schroeder, J. Langguth
{"title":"在Graphcore ipu上实现时空图卷积网络","authors":"Johannes Moe, Konstantin Pogorelov, Daniel Thilo Schroeder, J. Langguth","doi":"10.1109/IPDPSW55747.2022.00016","DOIUrl":null,"url":null,"abstract":"Artificial neural networks have been used for a multitude of regression tasks, and their descendants have expanded the domain to many applications such as image and speech recognition, filtering of social networks, and machine translation. While conventional and recurrent neural networks work well on data represented in Euclidean space, they struggle with data in non-Euclidean space. Graph Neural Networks (GNN) expand recurrent neural networks to directly process sparse representations of graphs, but they are computationally expensive, which invites the use of powerful hardware accelerators. In this paper, we investigate the viability of the Graphcore Intelligence Processing Unit (IPU) for efficient implementation of Spatio-Temporal Graph Convolutional Networks. The results show that IPUs are well suited for this task.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Implementating Spatio-Temporal Graph Convolutional Networks on Graphcore IPUs\",\"authors\":\"Johannes Moe, Konstantin Pogorelov, Daniel Thilo Schroeder, J. Langguth\",\"doi\":\"10.1109/IPDPSW55747.2022.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural networks have been used for a multitude of regression tasks, and their descendants have expanded the domain to many applications such as image and speech recognition, filtering of social networks, and machine translation. While conventional and recurrent neural networks work well on data represented in Euclidean space, they struggle with data in non-Euclidean space. Graph Neural Networks (GNN) expand recurrent neural networks to directly process sparse representations of graphs, but they are computationally expensive, which invites the use of powerful hardware accelerators. In this paper, we investigate the viability of the Graphcore Intelligence Processing Unit (IPU) for efficient implementation of Spatio-Temporal Graph Convolutional Networks. The results show that IPUs are well suited for this task.\",\"PeriodicalId\":286968,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW55747.2022.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人工神经网络已经被用于大量的回归任务,它们的后代已经扩展到许多应用领域,如图像和语音识别、社交网络过滤和机器翻译。虽然传统和循环神经网络在欧几里得空间中表示的数据上工作得很好,但它们在处理非欧几里得空间中的数据时却很困难。图神经网络(GNN)扩展了递归神经网络来直接处理图的稀疏表示,但它们的计算成本很高,需要使用强大的硬件加速器。在本文中,我们研究了Graphcore智能处理单元(IPU)用于有效实现时空图卷积网络的可行性。结果表明,ipu非常适合这一任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementating Spatio-Temporal Graph Convolutional Networks on Graphcore IPUs
Artificial neural networks have been used for a multitude of regression tasks, and their descendants have expanded the domain to many applications such as image and speech recognition, filtering of social networks, and machine translation. While conventional and recurrent neural networks work well on data represented in Euclidean space, they struggle with data in non-Euclidean space. Graph Neural Networks (GNN) expand recurrent neural networks to directly process sparse representations of graphs, but they are computationally expensive, which invites the use of powerful hardware accelerators. In this paper, we investigate the viability of the Graphcore Intelligence Processing Unit (IPU) for efficient implementation of Spatio-Temporal Graph Convolutional Networks. The results show that IPUs are well suited for this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信