使用验证的深度神经网络的最小修改

B. Goldberger, Guy Katz, Yossi Adi, Joseph Keshet
{"title":"使用验证的深度神经网络的最小修改","authors":"B. Goldberger, Guy Katz, Yossi Adi, Joseph Keshet","doi":"10.29007/699q","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) are revolutionizing the way complex systems are designed, developed and maintained. As part of the life cycle of DNN-based systems, there is often a need to modify a DNN in subtle ways that affect certain aspects of its behavior, while leaving other aspects of its behavior unchanged (e.g., if a bug is discovered and needs to be fixed, without altering other functionality). Unfortunately, retraining a DNN is often difficult and expensive, and may produce a new DNN that is quite different from the original. We leverage recent advances in DNN verification and propose a technique for modifying a DNN according to certain requirements, in a way that is provably minimal, does not require any retraining, and is thus less likely to affect other aspects of the DNN’s behavior. Using a proof-of-concept implementation, we demonstrate the usefulness and potential of our approach in addressing two real-world needs: (i) measuring the resilience of DNN watermarking schemes; and (ii) bug repair in already-trained DNNs.","PeriodicalId":207621,"journal":{"name":"Logic Programming and Automated Reasoning","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Minimal Modifications of Deep Neural Networks using Verification\",\"authors\":\"B. Goldberger, Guy Katz, Yossi Adi, Joseph Keshet\",\"doi\":\"10.29007/699q\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks (DNNs) are revolutionizing the way complex systems are designed, developed and maintained. As part of the life cycle of DNN-based systems, there is often a need to modify a DNN in subtle ways that affect certain aspects of its behavior, while leaving other aspects of its behavior unchanged (e.g., if a bug is discovered and needs to be fixed, without altering other functionality). Unfortunately, retraining a DNN is often difficult and expensive, and may produce a new DNN that is quite different from the original. We leverage recent advances in DNN verification and propose a technique for modifying a DNN according to certain requirements, in a way that is provably minimal, does not require any retraining, and is thus less likely to affect other aspects of the DNN’s behavior. Using a proof-of-concept implementation, we demonstrate the usefulness and potential of our approach in addressing two real-world needs: (i) measuring the resilience of DNN watermarking schemes; and (ii) bug repair in already-trained DNNs.\",\"PeriodicalId\":207621,\"journal\":{\"name\":\"Logic Programming and Automated Reasoning\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Programming and Automated Reasoning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/699q\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Programming and Automated Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/699q","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

深度神经网络(dnn)正在彻底改变复杂系统的设计、开发和维护方式。作为基于DNN的系统生命周期的一部分,通常需要以微妙的方式修改DNN,影响其行为的某些方面,同时保持其行为的其他方面不变(例如,如果发现错误并需要修复,则不改变其他功能)。不幸的是,重新训练DNN通常是困难和昂贵的,并且可能产生与原始DNN完全不同的新DNN。我们利用DNN验证的最新进展,提出了一种根据特定要求修改DNN的技术,这种技术可以证明是最小的,不需要任何再训练,因此不太可能影响DNN行为的其他方面。通过概念验证实现,我们展示了我们的方法在解决两个现实世界需求方面的有用性和潜力:(i)测量DNN水印方案的弹性;(ii)在已训练的dnn中修复错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal Modifications of Deep Neural Networks using Verification
Deep neural networks (DNNs) are revolutionizing the way complex systems are designed, developed and maintained. As part of the life cycle of DNN-based systems, there is often a need to modify a DNN in subtle ways that affect certain aspects of its behavior, while leaving other aspects of its behavior unchanged (e.g., if a bug is discovered and needs to be fixed, without altering other functionality). Unfortunately, retraining a DNN is often difficult and expensive, and may produce a new DNN that is quite different from the original. We leverage recent advances in DNN verification and propose a technique for modifying a DNN according to certain requirements, in a way that is provably minimal, does not require any retraining, and is thus less likely to affect other aspects of the DNN’s behavior. Using a proof-of-concept implementation, we demonstrate the usefulness and potential of our approach in addressing two real-world needs: (i) measuring the resilience of DNN watermarking schemes; and (ii) bug repair in already-trained DNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信