多证明者编码方案和三证明者证明系统

G. Tardos
{"title":"多证明者编码方案和三证明者证明系统","authors":"G. Tardos","doi":"10.1109/SCT.1994.315793","DOIUrl":null,"url":null,"abstract":"Suppose two provers agree in a polynomial p and want to reveal a single value y=p(x) to a verifier where m is chosen arbitrarily by the verifier. Whereas honest provers should be able to agree on any polynomial p the verifier wants to be sure that with any (cheating) pair of provers the value y he receives is a polynomial function of x. We formalize this question and introduce multi-prover (quasi-)encoding schemes to solve it. Multi-prover quasi-encoding schemes are used to develop new interactive proof techniques. The main result of M. Bellare et al. (1993) is the existence of one-round four-prover interactive proof system for any language an NP achieving any constant error probability with O(log n) random bits and poly(log log n) answer-sizes. We improve this result in two respects. First we decrease the number of provers to three, and then we decrease the answer-size to a constant. Reduction of each parameter de critical for applications. When the error-probability is required to approach zero, our technique is efficient in the number of random bits and in the answer size.<<ETX>>","PeriodicalId":386782,"journal":{"name":"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory","volume":"371 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multi-prover encoding schemes and three-prover proof systems\",\"authors\":\"G. Tardos\",\"doi\":\"10.1109/SCT.1994.315793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose two provers agree in a polynomial p and want to reveal a single value y=p(x) to a verifier where m is chosen arbitrarily by the verifier. Whereas honest provers should be able to agree on any polynomial p the verifier wants to be sure that with any (cheating) pair of provers the value y he receives is a polynomial function of x. We formalize this question and introduce multi-prover (quasi-)encoding schemes to solve it. Multi-prover quasi-encoding schemes are used to develop new interactive proof techniques. The main result of M. Bellare et al. (1993) is the existence of one-round four-prover interactive proof system for any language an NP achieving any constant error probability with O(log n) random bits and poly(log log n) answer-sizes. We improve this result in two respects. First we decrease the number of provers to three, and then we decrease the answer-size to a constant. Reduction of each parameter de critical for applications. When the error-probability is required to approach zero, our technique is efficient in the number of random bits and in the answer size.<<ETX>>\",\"PeriodicalId\":386782,\"journal\":{\"name\":\"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory\",\"volume\":\"371 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1994.315793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1994.315793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

假设两个证明者在多项式p上达成一致,并希望向验证者透露单个值y=p(x),其中m是由验证者任意选择的。虽然诚实的证明者应该能够在任何多项式p上达成一致,但验证者想要确保在任何(欺骗的)证明者对中,他收到的值y是x的多项式函数。我们形式化了这个问题,并引入了多证明者(拟)编码方案来解决它。多证明者准编码方案用于开发新的交互式证明技术。M. Bellare等人(1993)的主要结果是,对于任何语言的NP,具有O(log n)个随机比特和多(log log n)个答案大小,实现任意恒定错误概率的四轮四证明者交互式证明系统的存在。我们从两个方面改进了这个结果。首先,我们将证明者的数量减少到三个,然后将答案大小减少到一个常数。减少每个参数对应用程序至关重要。当要求错误概率接近于零时,我们的技术在随机比特数和答案大小方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-prover encoding schemes and three-prover proof systems
Suppose two provers agree in a polynomial p and want to reveal a single value y=p(x) to a verifier where m is chosen arbitrarily by the verifier. Whereas honest provers should be able to agree on any polynomial p the verifier wants to be sure that with any (cheating) pair of provers the value y he receives is a polynomial function of x. We formalize this question and introduce multi-prover (quasi-)encoding schemes to solve it. Multi-prover quasi-encoding schemes are used to develop new interactive proof techniques. The main result of M. Bellare et al. (1993) is the existence of one-round four-prover interactive proof system for any language an NP achieving any constant error probability with O(log n) random bits and poly(log log n) answer-sizes. We improve this result in two respects. First we decrease the number of provers to three, and then we decrease the answer-size to a constant. Reduction of each parameter de critical for applications. When the error-probability is required to approach zero, our technique is efficient in the number of random bits and in the answer size.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信