可信的生物特征哈希方法

Ç. Karabat, Hakan Erdogan
{"title":"可信的生物特征哈希方法","authors":"Ç. Karabat, Hakan Erdogan","doi":"10.1109/SIU.2009.5136333","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel biometric hashing method. We employ a password-generated random projection matrix applied to the face images directly instead of applying to the features extracted from face images and improve the methods in the literature. We aim to preserve privacy while achieving desirable accuracy in a biometric verification system. We do the verifiation in the hash domain and ensure irreversibility. In addition, we can get a new hash value by only changing the password which ensures cancelable biometrics property. We achieve zero equal error rate (EER) on Carnegie Mellon University face database. Furthermore, we achieve an EER of 0.0061, even if the attackers compromise the password and the random number generator. Besides, we test robustness of the proposed system against possible degradations due to sensor and environment inperfections. The norm of error is below optimum threshold obtained at EER for all distortions.","PeriodicalId":219938,"journal":{"name":"2009 IEEE 17th Signal Processing and Communications Applications Conference","volume":"31 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Trustworthy biometric hashing method\",\"authors\":\"Ç. Karabat, Hakan Erdogan\",\"doi\":\"10.1109/SIU.2009.5136333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel biometric hashing method. We employ a password-generated random projection matrix applied to the face images directly instead of applying to the features extracted from face images and improve the methods in the literature. We aim to preserve privacy while achieving desirable accuracy in a biometric verification system. We do the verifiation in the hash domain and ensure irreversibility. In addition, we can get a new hash value by only changing the password which ensures cancelable biometrics property. We achieve zero equal error rate (EER) on Carnegie Mellon University face database. Furthermore, we achieve an EER of 0.0061, even if the attackers compromise the password and the random number generator. Besides, we test robustness of the proposed system against possible degradations due to sensor and environment inperfections. The norm of error is below optimum threshold obtained at EER for all distortions.\",\"PeriodicalId\":219938,\"journal\":{\"name\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"volume\":\"31 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2009.5136333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 17th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2009.5136333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的生物特征哈希方法。我们采用密码生成的随机投影矩阵直接应用于人脸图像,而不是应用于从人脸图像中提取的特征,并改进了文献中的方法。我们的目标是保护隐私,同时在生物识别验证系统中实现理想的准确性。我们在哈希域中进行验证,并确保不可逆性。此外,我们可以通过更改密码来获得新的哈希值,从而确保可取消的生物特征属性。在卡内基梅隆大学人脸数据库上实现了零等错误率(EER)。此外,即使攻击者破坏了密码和随机数生成器,我们也实现了0.0061的EER。此外,我们测试了所提出的系统对可能由于传感器和环境不完美而导致的退化的鲁棒性。误差范数低于在EER获得的所有畸变的最佳阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trustworthy biometric hashing method
In this paper, we propose a novel biometric hashing method. We employ a password-generated random projection matrix applied to the face images directly instead of applying to the features extracted from face images and improve the methods in the literature. We aim to preserve privacy while achieving desirable accuracy in a biometric verification system. We do the verifiation in the hash domain and ensure irreversibility. In addition, we can get a new hash value by only changing the password which ensures cancelable biometrics property. We achieve zero equal error rate (EER) on Carnegie Mellon University face database. Furthermore, we achieve an EER of 0.0061, even if the attackers compromise the password and the random number generator. Besides, we test robustness of the proposed system against possible degradations due to sensor and environment inperfections. The norm of error is below optimum threshold obtained at EER for all distortions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信