基于元学习的噪声滤波算法推荐

P. B. Pio, L. P. F. Garcia, A. Rivolli
{"title":"基于元学习的噪声滤波算法推荐","authors":"P. B. Pio, L. P. F. Garcia, A. Rivolli","doi":"10.5753/kdmile.2022.227958","DOIUrl":null,"url":null,"abstract":"Preprocessing techniques can increase the quality or even enable Machine Learning algorithms. However, it is not simple to identify the preprocessing algorithms we should apply. This work proposes a methodology to recommend a noise filtering algorithm based on Meta-Learning, predicting which algorithm should be chosen based on a set of features calculated from a dataset. From synthetics datasets, we created the meta-data from an extracted set of meta-features and the f1-score performance metric calculated from the DT, KNN, and RF classifiers. To perform the suggestion, we used a meta-ranker that returns the rank of the best algorithms. We selected three noise filtering algorithms, HARF, GE, and ORBoost. To predict the f1-score, we used the PCT, RF, and KNN algorithms as meta-rankers. Our results indicate that the proposed solution acquired over 60% and 80% accuracy when considering a top-1 and top-2 approach. It also shows that the meta-rankers, when compared with a random choice and single algorithms as a baseline, provided an overall performance gain for the Machine Learning algorithm.","PeriodicalId":417100,"journal":{"name":"Anais do X Symposium on Knowledge Discovery, Mining and Learning (KDMiLe 2022)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Meta-Learning Approach for Noise Filter Algorithm Recommendation\",\"authors\":\"P. B. Pio, L. P. F. Garcia, A. Rivolli\",\"doi\":\"10.5753/kdmile.2022.227958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preprocessing techniques can increase the quality or even enable Machine Learning algorithms. However, it is not simple to identify the preprocessing algorithms we should apply. This work proposes a methodology to recommend a noise filtering algorithm based on Meta-Learning, predicting which algorithm should be chosen based on a set of features calculated from a dataset. From synthetics datasets, we created the meta-data from an extracted set of meta-features and the f1-score performance metric calculated from the DT, KNN, and RF classifiers. To perform the suggestion, we used a meta-ranker that returns the rank of the best algorithms. We selected three noise filtering algorithms, HARF, GE, and ORBoost. To predict the f1-score, we used the PCT, RF, and KNN algorithms as meta-rankers. Our results indicate that the proposed solution acquired over 60% and 80% accuracy when considering a top-1 and top-2 approach. It also shows that the meta-rankers, when compared with a random choice and single algorithms as a baseline, provided an overall performance gain for the Machine Learning algorithm.\",\"PeriodicalId\":417100,\"journal\":{\"name\":\"Anais do X Symposium on Knowledge Discovery, Mining and Learning (KDMiLe 2022)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do X Symposium on Knowledge Discovery, Mining and Learning (KDMiLe 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/kdmile.2022.227958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do X Symposium on Knowledge Discovery, Mining and Learning (KDMiLe 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/kdmile.2022.227958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

预处理技术可以提高质量,甚至可以启用机器学习算法。然而,确定我们应该采用的预处理算法并不简单。本研究提出了一种推荐基于元学习的噪声过滤算法的方法,该方法基于从数据集中计算的一组特征来预测应该选择哪种算法。从合成数据集中,我们从一组提取的元特征和从DT、KNN和RF分类器计算的f1分性能指标中创建了元数据。为了执行建议,我们使用了一个元排名器来返回最佳算法的排名。我们选择了三种噪声滤波算法:HARF、GE和ORBoost。为了预测f1评分,我们使用PCT、RF和KNN算法作为元排名。结果表明,在考虑top-1和top-2方法时,该方法的准确率分别超过60%和80%。它还表明,与随机选择和单一算法作为基线相比,元排名器为机器学习算法提供了整体性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-Learning Approach for Noise Filter Algorithm Recommendation
Preprocessing techniques can increase the quality or even enable Machine Learning algorithms. However, it is not simple to identify the preprocessing algorithms we should apply. This work proposes a methodology to recommend a noise filtering algorithm based on Meta-Learning, predicting which algorithm should be chosen based on a set of features calculated from a dataset. From synthetics datasets, we created the meta-data from an extracted set of meta-features and the f1-score performance metric calculated from the DT, KNN, and RF classifiers. To perform the suggestion, we used a meta-ranker that returns the rank of the best algorithms. We selected three noise filtering algorithms, HARF, GE, and ORBoost. To predict the f1-score, we used the PCT, RF, and KNN algorithms as meta-rankers. Our results indicate that the proposed solution acquired over 60% and 80% accuracy when considering a top-1 and top-2 approach. It also shows that the meta-rankers, when compared with a random choice and single algorithms as a baseline, provided an overall performance gain for the Machine Learning algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信