群体计数中领域自适应的动态传递

Shekhor Chanda, Yang Wang
{"title":"群体计数中领域自适应的动态传递","authors":"Shekhor Chanda, Yang Wang","doi":"10.23919/MVA57639.2023.10216197","DOIUrl":null,"url":null,"abstract":"We consider the problem of domain adaptation in crowd counting. Given a pre-trained model learned from a source domain, our goal is to adapt this model to a target domain using unlabeled data. The solution to this problem has a lot of potential applications in computer vision research that require a neural network model adapted to a target dataset. In this paper, we illustrate a dynamic domain adaptation technique. Specifically, we apply dynamic transfer for solving domain adaptation problems in crowd counting. The key insight is that adapting the model for the target domain is achieved by adapting the model across the data samples. The experimental results on several benchmark datasets demonstrate the effectiveness of our approaches.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Transfer for Domain Adaptation in Crowd Counting\",\"authors\":\"Shekhor Chanda, Yang Wang\",\"doi\":\"10.23919/MVA57639.2023.10216197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of domain adaptation in crowd counting. Given a pre-trained model learned from a source domain, our goal is to adapt this model to a target domain using unlabeled data. The solution to this problem has a lot of potential applications in computer vision research that require a neural network model adapted to a target dataset. In this paper, we illustrate a dynamic domain adaptation technique. Specifically, we apply dynamic transfer for solving domain adaptation problems in crowd counting. The key insight is that adapting the model for the target domain is achieved by adapting the model across the data samples. The experimental results on several benchmark datasets demonstrate the effectiveness of our approaches.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10216197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10216197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了人群计数中的领域自适应问题。给定从源领域学习的预训练模型,我们的目标是使用未标记的数据使该模型适应目标领域。这个问题的解决方案在计算机视觉研究中有很多潜在的应用,这需要一个适应目标数据集的神经网络模型。本文介绍了一种动态域自适应技术。具体来说,我们将动态迁移应用于解决人群计数中的领域自适应问题。关键的见解是,通过跨数据样本调整模型来实现针对目标领域的模型调整。在几个基准数据集上的实验结果证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Transfer for Domain Adaptation in Crowd Counting
We consider the problem of domain adaptation in crowd counting. Given a pre-trained model learned from a source domain, our goal is to adapt this model to a target domain using unlabeled data. The solution to this problem has a lot of potential applications in computer vision research that require a neural network model adapted to a target dataset. In this paper, we illustrate a dynamic domain adaptation technique. Specifically, we apply dynamic transfer for solving domain adaptation problems in crowd counting. The key insight is that adapting the model for the target domain is achieved by adapting the model across the data samples. The experimental results on several benchmark datasets demonstrate the effectiveness of our approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信