SafeDNN:理解和验证神经网络(主题演讲)

C. Pasareanu
{"title":"SafeDNN:理解和验证神经网络(主题演讲)","authors":"C. Pasareanu","doi":"10.1145/3412452.3428119","DOIUrl":null,"url":null,"abstract":"The SafeDNN project at NASA Ames explores new techniques and tools to ensure that systems that use Deep Neural Networks (DNN) are safe, robust and interpretable. Research directions we are pursuing in this project include: symbolic execution for DNN analysis, label-guided clustering to automatically identify input regions that are robust, parallel and compositional approaches to improve formal SMT-based verification, property inference and automated program repair for DNNs, adversarial training and detection, probabilistic reasoning for DNNs. In this talk I will highlight some of the research advances from SafeDNN.","PeriodicalId":163705,"journal":{"name":"Proceedings of the 11th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SafeDNN: understanding and verifying neural networks (keynote)\",\"authors\":\"C. Pasareanu\",\"doi\":\"10.1145/3412452.3428119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SafeDNN project at NASA Ames explores new techniques and tools to ensure that systems that use Deep Neural Networks (DNN) are safe, robust and interpretable. Research directions we are pursuing in this project include: symbolic execution for DNN analysis, label-guided clustering to automatically identify input regions that are robust, parallel and compositional approaches to improve formal SMT-based verification, property inference and automated program repair for DNNs, adversarial training and detection, probabilistic reasoning for DNNs. In this talk I will highlight some of the research advances from SafeDNN.\",\"PeriodicalId\":163705,\"journal\":{\"name\":\"Proceedings of the 11th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3412452.3428119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3412452.3428119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

NASA艾姆斯的SafeDNN项目探索新技术和工具,以确保使用深度神经网络(DNN)的系统安全、稳健和可解释。我们在这个项目中追求的研究方向包括:用于DNN分析的符号执行,用于自动识别鲁棒输入区域的标签引导聚类,用于改进基于smt的形式验证的并行和组合方法,用于DNN的属性推理和自动程序修复,用于DNN的对抗性训练和检测,用于DNN的概率推理。在这次演讲中,我将重点介绍SafeDNN的一些研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SafeDNN: understanding and verifying neural networks (keynote)
The SafeDNN project at NASA Ames explores new techniques and tools to ensure that systems that use Deep Neural Networks (DNN) are safe, robust and interpretable. Research directions we are pursuing in this project include: symbolic execution for DNN analysis, label-guided clustering to automatically identify input regions that are robust, parallel and compositional approaches to improve formal SMT-based verification, property inference and automated program repair for DNNs, adversarial training and detection, probabilistic reasoning for DNNs. In this talk I will highlight some of the research advances from SafeDNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信