基于特定道路曲率点的车辆加速度预测

ICINCO-RA Pub Date : 1900-01-01 DOI:10.5220/0002173401470152
A. Vidugiriene, A. Demčenko, M. Tamosiunaite
{"title":"基于特定道路曲率点的车辆加速度预测","authors":"A. Vidugiriene, A. Demčenko, M. Tamosiunaite","doi":"10.5220/0002173401470152","DOIUrl":null,"url":null,"abstract":"In the work vehicle acceleration prediction issue is discussed. Three types of parameters are used for prediction system input: CAN-bus parameters - speed and curvature, derived speed parameters and newly offered specific curve point parameters, denoting changes in a curve. The real road data was used for predictions. Road curvature segments were divided into single and S-type curves. Acceleration was predicted using artificial neural networks and look-up table. The look-up table method showed the best results with newly offered specific curve parameters.","PeriodicalId":302311,"journal":{"name":"ICINCO-RA","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle Acceleration Prediction using Specific Road Curvature Points\",\"authors\":\"A. Vidugiriene, A. Demčenko, M. Tamosiunaite\",\"doi\":\"10.5220/0002173401470152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the work vehicle acceleration prediction issue is discussed. Three types of parameters are used for prediction system input: CAN-bus parameters - speed and curvature, derived speed parameters and newly offered specific curve point parameters, denoting changes in a curve. The real road data was used for predictions. Road curvature segments were divided into single and S-type curves. Acceleration was predicted using artificial neural networks and look-up table. The look-up table method showed the best results with newly offered specific curve parameters.\",\"PeriodicalId\":302311,\"journal\":{\"name\":\"ICINCO-RA\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICINCO-RA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0002173401470152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICINCO-RA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0002173401470152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讨论了工作车辆加速度预测问题。三种类型的参数用于预测系统输入:can总线参数-速度和曲率,导出的速度参数和新提供的特定曲线点参数,表示曲线的变化。真实的道路数据被用于预测。道路曲率段分为单曲线段和s型曲线段。利用人工神经网络和查找表对加速度进行了预测。在新提供的特定曲线参数下,查表法得到的结果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Acceleration Prediction using Specific Road Curvature Points
In the work vehicle acceleration prediction issue is discussed. Three types of parameters are used for prediction system input: CAN-bus parameters - speed and curvature, derived speed parameters and newly offered specific curve point parameters, denoting changes in a curve. The real road data was used for predictions. Road curvature segments were divided into single and S-type curves. Acceleration was predicted using artificial neural networks and look-up table. The look-up table method showed the best results with newly offered specific curve parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信