基于形态学滤波和回归模型的高维图像光谱空间分类

M. Imani, H. Ghassemian
{"title":"基于形态学滤波和回归模型的高维图像光谱空间分类","authors":"M. Imani, H. Ghassemian","doi":"10.1109/ICIAS.2016.7824087","DOIUrl":null,"url":null,"abstract":"The integration of spectral and spatial features can significantly improve the hyperspectral image classification. In this paper, a spectral-spatial classification method is proposed which extracts the spatial features from the morphology profile of image using a regression model. It obtains the relationship between the neighbouring pixels in a spatial window of morphology profile obtained from the hyperspectral image using a regression model and considers the regression coefficients as extracted spatial features. Then, the morphology features, the regression coefficients and the original spectral features are fused together to form the final feature vector for classification. The experimental results show the superiority of proposed method compared to some other methods from the classification accuracy point of view.","PeriodicalId":247287,"journal":{"name":"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spectral-spatial classification of high dimensional images using morphological filters and regression model\",\"authors\":\"M. Imani, H. Ghassemian\",\"doi\":\"10.1109/ICIAS.2016.7824087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of spectral and spatial features can significantly improve the hyperspectral image classification. In this paper, a spectral-spatial classification method is proposed which extracts the spatial features from the morphology profile of image using a regression model. It obtains the relationship between the neighbouring pixels in a spatial window of morphology profile obtained from the hyperspectral image using a regression model and considers the regression coefficients as extracted spatial features. Then, the morphology features, the regression coefficients and the original spectral features are fused together to form the final feature vector for classification. The experimental results show the superiority of proposed method compared to some other methods from the classification accuracy point of view.\",\"PeriodicalId\":247287,\"journal\":{\"name\":\"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS.2016.7824087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS.2016.7824087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

光谱特征与空间特征的融合可以显著提高高光谱图像的分类能力。本文提出了一种利用回归模型从图像形态轮廓中提取空间特征的光谱-空间分类方法。利用回归模型得到高光谱图像形态轮廓空间窗口内相邻像素之间的关系,并将回归系数作为提取的空间特征。然后,将形态学特征、回归系数和原始光谱特征融合在一起,形成最终的特征向量进行分类。实验结果表明,该方法在分类精度上优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral-spatial classification of high dimensional images using morphological filters and regression model
The integration of spectral and spatial features can significantly improve the hyperspectral image classification. In this paper, a spectral-spatial classification method is proposed which extracts the spatial features from the morphology profile of image using a regression model. It obtains the relationship between the neighbouring pixels in a spatial window of morphology profile obtained from the hyperspectral image using a regression model and considers the regression coefficients as extracted spatial features. Then, the morphology features, the regression coefficients and the original spectral features are fused together to form the final feature vector for classification. The experimental results show the superiority of proposed method compared to some other methods from the classification accuracy point of view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信