基于MATLAB的卷积神经网络车辆分类比较

M. Frniak, P. Kamencay, M. Markovic, J. Dubovan, M. Dado
{"title":"基于MATLAB的卷积神经网络车辆分类比较","authors":"M. Frniak, P. Kamencay, M. Markovic, J. Dubovan, M. Dado","doi":"10.1109/ELEKTRO49696.2020.9130238","DOIUrl":null,"url":null,"abstract":"The number of cars driving on the roads is increasing every year. Due to the large number and especially the weight of passing vehicles, roads are in critical condition and need more and more investments for their repair. This incurs significant costs for road operators. Article goals are the visual classification of passing vehicles over the tested platform using neural networks. The differences, performance and their structures comparisons of these two neural networks, AlexNet and GoogLeNet, will be described.","PeriodicalId":165069,"journal":{"name":"2020 ELEKTRO","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of Vehicle Categorisation by Convolutional Neural Networks using MATLAB\",\"authors\":\"M. Frniak, P. Kamencay, M. Markovic, J. Dubovan, M. Dado\",\"doi\":\"10.1109/ELEKTRO49696.2020.9130238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of cars driving on the roads is increasing every year. Due to the large number and especially the weight of passing vehicles, roads are in critical condition and need more and more investments for their repair. This incurs significant costs for road operators. Article goals are the visual classification of passing vehicles over the tested platform using neural networks. The differences, performance and their structures comparisons of these two neural networks, AlexNet and GoogLeNet, will be described.\",\"PeriodicalId\":165069,\"journal\":{\"name\":\"2020 ELEKTRO\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 ELEKTRO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELEKTRO49696.2020.9130238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 ELEKTRO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELEKTRO49696.2020.9130238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

道路上行驶的汽车数量每年都在增加。由于通行车辆的数量多,特别是车辆的重量大,道路状况危急,需要越来越多的投资进行维修。这给道路运营商带来了巨大的成本。本文的目标是使用神经网络对经过测试平台的车辆进行视觉分类。将描述这两个神经网络AlexNet和GoogLeNet的差异,性能及其结构比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Vehicle Categorisation by Convolutional Neural Networks using MATLAB
The number of cars driving on the roads is increasing every year. Due to the large number and especially the weight of passing vehicles, roads are in critical condition and need more and more investments for their repair. This incurs significant costs for road operators. Article goals are the visual classification of passing vehicles over the tested platform using neural networks. The differences, performance and their structures comparisons of these two neural networks, AlexNet and GoogLeNet, will be described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信