基于图模型优化的历史汉字分割方法

Jingning Ji, Liangrui Peng, Bohan Li
{"title":"基于图模型优化的历史汉字分割方法","authors":"Jingning Ji, Liangrui Peng, Bohan Li","doi":"10.1109/DAS.2014.57","DOIUrl":null,"url":null,"abstract":"Historical Chinese document recognition technology is important for digital library. However, historical Chinese character segmentation remains a difficult problem due to the complex structure of Chinese characters and various writing styles. This paper presents a novel method for historical Chinese character segmentation based on graph model. After a preliminary over-segmentation stage, the system applies a merging process. The candidate segmentation positions are denoted by the nodes of a graph, and the merging process is regarded as selecting an optimal path of the graph. The weight of edge in the graph is calculated by the cost function which considers geometric features and recognition confidence. Experimental results show that the proposed method is effective with a detection rate of 94.6% and an accuracy rate of 96.1% on a test set of practical historical Chinese document samples.","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Graph Model Optimization Based Historical Chinese Character Segmentation Method\",\"authors\":\"Jingning Ji, Liangrui Peng, Bohan Li\",\"doi\":\"10.1109/DAS.2014.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Historical Chinese document recognition technology is important for digital library. However, historical Chinese character segmentation remains a difficult problem due to the complex structure of Chinese characters and various writing styles. This paper presents a novel method for historical Chinese character segmentation based on graph model. After a preliminary over-segmentation stage, the system applies a merging process. The candidate segmentation positions are denoted by the nodes of a graph, and the merging process is regarded as selecting an optimal path of the graph. The weight of edge in the graph is calculated by the cost function which considers geometric features and recognition confidence. Experimental results show that the proposed method is effective with a detection rate of 94.6% and an accuracy rate of 96.1% on a test set of practical historical Chinese document samples.\",\"PeriodicalId\":220495,\"journal\":{\"name\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAS.2014.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

中文历史文献识别技术是数字图书馆的重要组成部分。然而,由于汉字结构复杂,写法多样,历史汉字切分一直是一个难题。提出了一种基于图模型的历史汉字分割新方法。经过初步的过分割阶段后,系统应用合并过程。候选分割位置用图的节点表示,合并过程看作是选择图的最优路径。利用考虑几何特征和识别置信度的代价函数计算图中边的权值。实验结果表明,该方法在实际中文历史文献样本测试集上的检测率为94.6%,准确率为96.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Model Optimization Based Historical Chinese Character Segmentation Method
Historical Chinese document recognition technology is important for digital library. However, historical Chinese character segmentation remains a difficult problem due to the complex structure of Chinese characters and various writing styles. This paper presents a novel method for historical Chinese character segmentation based on graph model. After a preliminary over-segmentation stage, the system applies a merging process. The candidate segmentation positions are denoted by the nodes of a graph, and the merging process is regarded as selecting an optimal path of the graph. The weight of edge in the graph is calculated by the cost function which considers geometric features and recognition confidence. Experimental results show that the proposed method is effective with a detection rate of 94.6% and an accuracy rate of 96.1% on a test set of practical historical Chinese document samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信