用于帧缓冲显示的彩色图像量化

Paul S. Heckbert
{"title":"用于帧缓冲显示的彩色图像量化","authors":"Paul S. Heckbert","doi":"10.1145/280811.281025","DOIUrl":null,"url":null,"abstract":"Algorithms for adaptive, tapered quantization of color images are described. The research is motivated by the desire to display high-quality reproductions of color images with small frame buffers. It is demonstrated that many color images which would normally require a frame buffer having 15 bits per pixel can be quantized to 8 or fewer bits per pixel with little subjective degradation. In most cases, the resulting images look significantly better than those made with uniform quantization. The color image quantization task is broken into four phases: 1) Sampling the original image for color statistics 2) Choosing a colormap based on the color statistics 3) Mapping original colors to their nearest neighbors in the colormap 4) Quantizing and redrawing the original image (with optional dither). Several algorithms for each of phases 2-4 are described, and images created by each given.","PeriodicalId":236803,"journal":{"name":"Seminal graphics: pioneering efforts that shaped the field","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"218","resultStr":"{\"title\":\"Color image quantization for frame buffer display\",\"authors\":\"Paul S. Heckbert\",\"doi\":\"10.1145/280811.281025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithms for adaptive, tapered quantization of color images are described. The research is motivated by the desire to display high-quality reproductions of color images with small frame buffers. It is demonstrated that many color images which would normally require a frame buffer having 15 bits per pixel can be quantized to 8 or fewer bits per pixel with little subjective degradation. In most cases, the resulting images look significantly better than those made with uniform quantization. The color image quantization task is broken into four phases: 1) Sampling the original image for color statistics 2) Choosing a colormap based on the color statistics 3) Mapping original colors to their nearest neighbors in the colormap 4) Quantizing and redrawing the original image (with optional dither). Several algorithms for each of phases 2-4 are described, and images created by each given.\",\"PeriodicalId\":236803,\"journal\":{\"name\":\"Seminal graphics: pioneering efforts that shaped the field\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"218\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminal graphics: pioneering efforts that shaped the field\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/280811.281025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminal graphics: pioneering efforts that shaped the field","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/280811.281025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 218

摘要

描述了彩色图像的自适应、锥形量化算法。这项研究的动机是希望用小帧缓冲显示高质量的彩色图像复制品。它被证明,许多彩色图像通常需要一个帧缓冲有15位每像素可以量化到8位或更少的每像素与小主观退化。在大多数情况下,得到的图像看起来比均匀量化得到的图像要好得多。彩色图像量化任务分为四个阶段:1)对原始图像进行采样进行颜色统计2)根据颜色统计选择颜色图3)将原始颜色映射到颜色图中最近的邻居4)量化并重新绘制原始图像(可选抖动)。描述了阶段2-4的几个算法,并给出了每个算法创建的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color image quantization for frame buffer display
Algorithms for adaptive, tapered quantization of color images are described. The research is motivated by the desire to display high-quality reproductions of color images with small frame buffers. It is demonstrated that many color images which would normally require a frame buffer having 15 bits per pixel can be quantized to 8 or fewer bits per pixel with little subjective degradation. In most cases, the resulting images look significantly better than those made with uniform quantization. The color image quantization task is broken into four phases: 1) Sampling the original image for color statistics 2) Choosing a colormap based on the color statistics 3) Mapping original colors to their nearest neighbors in the colormap 4) Quantizing and redrawing the original image (with optional dither). Several algorithms for each of phases 2-4 are described, and images created by each given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信